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An artinian ring R is square-free in case none of its indecomposable
projective modules has a repeated composition factor. Let Q be the
quiver of such a square-free ring R. In this paper we show that if R
is indecomposable and transitive on the cyclic components of Q and
if Q contains no n-crown, then R ∼= D ⊗K A where D is the natural
division ring of R, K = CenD, and A is a square-free K-algebra.

Introduction.

Let R be an artinian ring with basic ring R, and suppose that R/J ∼= Dn (as rings) for some division

ring D and some n ∈ N. Then R is said to be split with division ring D. If K = CenD, then R is

a D-algebra in case also R ∼= D ⊗K A for some (necessarily split) K-algebra A. Much of the study

of such a D-algebra reduces to that of the usually more tractable K-algebra A. Of course, it is not

common for an artinian ring R to be split and even less common for it to be a D-algebra. Nevertheless,

it is of some interest to identify classes of artinian rings that can be realized as D-algebras. Fortunately,

as we show in Theorem 2.2, the property of being a D-algebra is Morita invariant, and so we may focus

on basic rings.

An artinian ring R is square-free in case no indecomposable projective R-module has a repeated

composition factor. In [7] D’Ambrosia has shown that every indecomposable square-free ring is split.

Moreover, there it is shown that there exist substantial classes of indecomposable square-free rings that

are not D-algebras for any division ring D. In this paper we find a large class of square-free rings that

are necessarily D-algebras.

Each artinian ring R determines two digraphs, the quivers of R. (See, for example, [11].) If R

is square-free, then these two quivers are order-theoretic duals (see [7] Lemma 2.11), so we work with
1In [7], D’Ambrosia inadvertently reversed the roles of left and right quivers. The reader should replace “left quiver”

with “right quiver” and vice versa when referring to that paper.
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the right quiver Q of R. We say that Q is solvable if it contains no n-crown (see Section 1). So, for

example, if Q is a tree or has a unique source or a unique sink, then Q is solvable.

Fuller and Haack ([8]) studied rings R whose quivers are trees. Such rings are necessarily square-free

and solvable. The main result of [8] is that, in effect, if the quivers of R are trees, then R is a D-algebra

and its basic ring is isomorphic to a factor ring of the D-incidence ring of a poset.

In this paper we consider the more general square-free rings with solvable quivers. Let Q be the

quiver of a square-free ring R. If all cut edges of Q, viewed as an undirected graph, are removed, the

connected components of the resulting graph are the cyclic components of Q. For the solvability of

Q to be reflected in the behavior of R we need that R be transitive on each of these cyclic components;

we say then that R is locally transitive. (See Section 3.) So if Q is a tree, then it is locally transitive.

Our main result, Theorem 3.8, is that if R is an indecomposable, locally transitive, square-free ring

with solvable quiver, then R is a D-algebra.

Finally, in Section 4 we look at a generalization of Gabriel’s Theorem for split K-algebras. We show

that a D-algebra is a factor of the D-path algebra of its quiver. From this it follows that, if R is basic

square-free locally transitive with solvable quiver, then R is a twisted factor ring of the D-incidence

algebra of its quiver.

The authors would like to thank Jessica K. Sklar for several helpful discussions about and comments

on earlier versions of this work.

1. Solvable Quivers.

By a quiver we will mean a finite digraph Q = (V,A) with vertex set V and arrow set A. By a d-path

(or directed path) in Q we mean a sequence of arrows

p = (a1, a2, . . . , am)

such that for each 1 ≤ i < m the terminal vertex of ai is the initial vertex of ai+1. A d-path with m

arrows has length m. A single vertex v will be considered as a degenerate (trivial) d-path of length 0

with initial and terminal vertices both v. A bi-directed cycle in Q is the union p ∪ q of two d-paths

of Q that intersect only in a common initial vertex and common terminal vertex.

We will also want to view the pair (V,A) as an undirected graph; that is, in this context we consider

each a ∈ A as an unoriented edge. Then by a path in Q we mean a path in the undirected graph (V,A).

A cycle in Q is just a non-trivial path that is simply closed. Thus, every d-path of Q is a path of Q,

and every bi-directed cycle of Q is a cycle of Q or a union of cycles such as two loops with the same

vertex. But the converses of these statements are true only in degenerate examples.
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1.1. Example. Consider the following quivers.
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Here Q1 has one cycle and one bi-directed cycle, the union of the two d-paths (a, b) and (c, d). The

quiver Q2 has one cycle and no bi-directed cycles. The graph Q3 has two bi-directed cycles and one

other cycle.

Let Q = (V,A) be a quiver that contains no directed cycles and hence no loops. A vertex is a source

if it is the head of no arrow and it is a sink if it is the tail of no arrow. Since our quiver is finite and

contains no directed cycles, it must have at least one source and at least one sink. Let U = {u1, . . . , un}
be a set of sources and W = {w1, . . . , wn} a set of sinks in Q. Then U and W determine an n-crown if

(C1) There is a d path from ui to wj iff i > 1 and i− 1 ≤ j ≤ i, or (i, j) = (1, 1), or (i, j) = (1, n) ;

(C2) If n = 2, no path from u1 to w2 shares a vertex with any path starting at u2 and ending at w1.

So, for example, the quiver Q2 of Example 1.1 is a 2-crown. For n > 2 an n-crown has the form

w1 w2 · · · wn−1 wn

u1 u2 · · · un−1 un
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where the arrows indicate directed paths of unspecified length. We say the quiver Q is solvable in case

it contains no n-crown. So note that if Q has either a single source or a single sink, then Q is solvable.

Let U = {u1, . . . , un} be a set of sources and W = {w1, . . . , wn} a set of sinks in Q. If there are

d-paths from ui to wi and wi−1 for all 1 < i ≤ n and from u1 to w1 and to wn, then we say that U and

W determine a weak n-crown. So an n-crown is a weak n-crown but not conversely.

1.2. Lemma. Suppose that Q is a connected solvable quiver. Let U = {u1, . . . , un} be a set of

sources and W = {w1, . . . , wn} a set of sinks in Q. If U and W determine a weak n-crown, then

there exist 1 < i ≤ n, 1 ≤ j < n and a vertex v with d-paths from u1 to wn through v and from ui

to wj through v.
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Proof. We’ll prove this by induction. For n = 2 this immediate from (C2). So let n > 2. Since Q
has no n-crowns, there is a d-path from some ui to some wj where

0 < j − i < n− 1 or 1 < i− j < n.

In the first case U ′ = {u1, . . . , ui, uj+1 . . . , un} and W ′ = {w1, . . . , wi−1, wj , . . . , wn} form a weak

n− j + i-crown. In the second, U ′ = {u1, . . . , uj , ui, . . . , un} and W ′ = {w1, . . . , wj , wi, . . . , wn} form a

weak n− i+ j + 1-crown. So by induction there exist the desired vertex v and d-paths.

Let V be the Z2-space on the set A of all arrows of a quiver Q = (V,A). Thus, we can also think of

V as the Boolean algebra P(A) of all subsets of A. Let C = C(Q) be the Z2-subspace spanned by the

cycles of Q and let B = B(Q) be the subspace spanned by the bi-directed cycles. Let

n = |V |, m = |A|, c = dim C, b = dimB.

Note that since c is just the number of edges removed from Q to give a spanning tree for Q,

c = m− n+ 1.

It can also be shown (see [5], Theorem II.3.5) that

b = m− c = n− 1.

If a quiver Q has no multiple arrows or directed cycles, then using an induction on the dimensions b of

certain subquivers, one can show that if Q is solvable, then b = c. We conjecture that the converse is

true, but so far a formal proof eludes us.

Now let Q = (V,A) be a quiver. By a subquiver of a quiver Q we mean a quiver whose vertex

and arrow sets are subsets of V and A. If H ⊆ A, then we may view H as a subquiver with arrow

set H. If H and K are two subquivers of Q, then H ∪ K is the subquiver whose vertex and arrow

sets are the unions of those of H and K, and H ∩K is the subquiver whose vertex and arrow sets are

the intersections of those of H and K. Also, if H ⊆ A, then the subgraph generated by H is the

(unoriented) subgraph of Q consisting of all edges from H together with the vertices of these edges.

The complement of H is the subgraph of Q generated by the edges of Q not in H.

Let T be the subgraph generated by the set of all cut edges of Q. (A cut edge is an edge whose

deletion separates the graph.) Let S be the complement of T , so each edge of S belongs to at least

one cycle. Let S1, . . . , Sr be the connected components of S; we call these the cyclic components of

Q. The subgraph T consists of a finite set of disjoint trees T1, . . . , Tq. Since each edge of T is a cut

edge of Q, each tree Ti meets any one cyclic component Sj in at most one common vertex. And if Q
is connected with r ≥ 1, each tree Ti meets at least one Sj in a common vertex. Note that if Q is
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connected and we shrink each cyclic component Si to a single vertex, then the resulting graph will be

a tree.

Suppose that Q is a finite quiver with no directed cycles. The addition or removal of a single arrow

that is a cut edge of the graph will not affect the existence of an n-crown. Thus, we see that Q is

solvable iff each of its cyclic components is solvable.

For every cyclic component Si, its star is the subgraph St(Si) of Q generated by Si and all trees

Tj in T that meet Si. A labeling {S1, . . . , , Sr} of the components of S is a proper order in case for

each 1 ≤ k ≤ r the graph

St(S1) ∪ St(S2) ∪ · · · ∪ St(Sk)

is connected.

1.3. Lemma. If Q is a connected quiver, then Q is a tree or there exists a proper order for the

cyclic components of Q.

Proof. Assume that Q is not a tree. Let r be the number of cyclic components S1, . . . , Sr, and let

1 ≤ k ≤ r. We induct on k. If k = 1, then the result is trivial. So let 1 ≤ k < r, and assume that cyclic

components S1, . . . , Sk have been chosen so that H = St(S1)∪ St(S2)∪ · · · ∪ St(Sk) is connected. Since

Q is connected, the complement of H must have at least one vertex in common with H. If some tree

Tj has a vertex in common with H, then it lies in H. Thus, there must be some cyclic component Sk+1

sharing a vertex with H. So, clearly, H ∪ St(Sk+1) is connected.

2. Square-free D-Algebras.

Let R be an artinian ring with radical J and with a basic set E = {e1, . . . , en}. Then (see [3], Exercise

32.14, [8], or [11]) the (right) quiver of R is the digraph Q(R) with vertex set E and with mij arrows

from ei to ej where mij is the multiplicity of the simple module ejR = ejR/ejJ in the semisimple

module eiJ/eiJ2. The left quiver of R is defined similarly.

An artinian ring R is square-free in case for every primitive idempotent e ∈ R, the indecomposable

projective modules Re and eR have no repeated composition factors. (See [7] for the basic facts about

these rings.) If R is square-free, then ([7], Lemma 2.1) the left quiver of R is just the order-theoretic

dual, Q(R)op, of the right quiver Q(R). So, in particular, for a square-free ring the left quiver is solvable

iff the right quiver is solvable. For the remainder of this paper we will assume that R is square-free.

Note that this means that the quiver Q of R has no multiple arrows, and no arrow from a vertex to

itself.

For a special case of such rings, let A be a finite dimensional algebra over a field K. Then the
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K-algebra A is square-free in case for each pair e, f ∈ A of primitive idempotents

dimK(eAf) ≤ 1.

These algebras have been described in detail in [2]. In particular, every incidence algebra of a pre-

ordered set is square-free. Observe that if A is a square-free K-algebra and if D is a division ring with

CenD = K, then

R = D ⊗K A

is a square-free ring. A square-free ring of this form is said to be a square-free D-algebra. As is

shown in [7], there are plenty of square-free rings that are not D-algebras. Let R be an indecomposable

square-free ring. Our main goal in this paper is to show that if R is locally transitive square-free (see

Section 3) with solvable quiver, then it must be a D-algebra for some D. Our intermediate goal in

this section is to obtain a characterization of square-free D-algebras that will provide the machinery to

prove the main result.

So now let R be an indecomposable square-free ring. Then (see [7], Theorem 1.4) there is a division

ring D, called the division ring of R, such that for every primitive idempotent e ∈ R, D ∼= eRe.

Moreover, for each pair e, f ∈ R of primitive idempotents, dimeRe(eRf) ≤ 1 and dimfRf (eRf) ≤ 1.

(See [7], Theorem 1.4.) It follows ([7], Corollary 1.5) that if e, f ∈ R are primitive idempotents with

eRf 6= 0, then for each 0 6= erf ∈ eRf , there is an isomorphism

ϕerf : eRe −→ fRf,

that we treat as a right operator2, where (exe)ϕerf is the unique element of fRf such that

exe · erf = erf · (exe)ϕerf .

This is the inverse of the isomorphism given in [7]. Concerning the isomorphisms ϕerf , we will use the

following slight variation of Corollary 1.5 from [7].

2.1. Lemma. Let e, f, g ∈ R be primitive idempotents in the square-free ring R and let r, s, t ∈ R.

If erfsg = (eae)etg 6= 0 for some eae ∈ Cen(eRe), then

ϕerfϕfsg = ϕetg.

Proof. For each exe ∈ eRe,

(etg) · (exe)ϕerfϕfsg = (eae)−1erfsg · (exe)ϕerfϕfsg

= (eae)−1erf · (exe)ϕerf · fsg

= (eae)−1 · exe · erfsg
2In this section and the next all maps will be written as right operators unless explicitly stated otherwise.
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= (exe)(eae)−1erfsg

= (exe)(etg)

= (etg)(exe)ϕetg.

And so ϕerfϕfsg = ϕetg.

Next, we observe that the property of being a D–algebra is Morita invariant, so that we can reduce

to the basic case.

2.2. Theorem. Let R and S be Morita equivalent rings. If R ∼= D⊗K A is a D-algebra, then there

is a K-algebra A′, Morita equivalent to A, such that S ∼= D ⊗K A′.

Proof. Suppose that R = D⊗K A. If e, f ∈ A are primitive idempotents with Ae ∼= Af , then 1⊗ e
and 1⊗ f are primitive idempotents of R with R(1⊗ e) ∼= R(1⊗ f). Thus, {e1, . . . , en} is a basic set of

primitive idempotents for A iff {1 ⊗ e1, . . . , 1 ⊗ en} is a basic set for R. Assuming that those sets are

basic, then

P ′ =
n⊕
i=1

(R(1⊗ ei))mi = D ⊗K
n⊕
i=1

(Aei)mi

is a progenerator for R iff mi ≥ 1 for each i, iff P = ⊕ni=1(Aei)mi is a progenerator for A. So it will

suffice to prove that if AP is a finitely generated projective A-module, then (see [3], Corollary 22.4)

EndR(D ⊗K P ) ∼= D ⊗K EndA(P ).

For in this case, we let A′ = EndA(P ), where P is a progenerator for A as described above.

But if P = An is free, then

EndR(D ⊗K An) ∼= EndR(Rn)

∼= Mn(R)

∼= D ⊗K Mn(A)

∼= D ⊗K EndA(An).

Finally, if e′ ∈ EndA(An) is idempotent, then there is an idempotent e ∈ EndR(Rn) with

EndR(D ⊗K Ane′) ∼= EndR(Rne)

∼= eEndR(Rn)e

∼= (1⊗ e′)(D ⊗K EndA(An))(1⊗ e′)
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∼= D ⊗K e′ EndA(An)e′

∼= D ⊗K EndA(Ane′),

as claimed.

For the remainder of this section, we will assume that R is a basic indecomposable square-free ring

with complete set E = {e1, . . . , en} of orthogonal primitive idempotents. We define a binary relation ≤
on E by

ei ≤ ej in case eiRej 6= 0.

In general, this relation need not be either transitive or anti-symmetric.

For each ei ≤ ej in E, fix 0 6= sij ∈ eiRej with the proviso that sii = ei for each i = 1, . . . , n. Then

the set

B = {sij : ei ≤ ej}

is a basis for R (over E). So if B = {sij} is a basis for R over E, then since dimeiRei(eiRej) ≤ 1 for

each i, j, we have that as additive groups,

R =
n∑
i=1

n∑
j=1

eiRej =
∑
ei≤ej

eiReisij .

If B is a basis for R over E, then we will usually abbreviate the isomorphisms ϕsij by

ϕij = ϕsij : eiRei −→ ejRej

for each sij ∈ B.

Let B be a basis for R over E and let B′ ⊆ B be a subset of B. We say that B′ is solvable in case

for each i = 1, . . . , n there is an isomorphism µi : D −→ eiRei such that

ϕij = µ−1
i µj

for all sij ∈ B′. We will also then say that (µi)ni=1 is a solution on B′. In particular, the basis B is a

solvable basis for R iff there is a solution (µi)ni=1 on B. Note that if (µi)ni=1 is a solution on B′ and if

α ∈ AutD, then (αµi)ni=1 is also a solution on B′.

2.3. Lemma. Let B′ ⊆ B be solvable. For all ei ≤ ej ≤ ek in E with ei ≤ ek, if sij , sjk, sik ∈ B′,
then there is a (necessarily unique) d = dijk ∈ Cen(eiRei) with

sijsjk = dsik.
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Proof. Since sijsjk ∈ eiReisik, there is a (necessarily unique) d ∈ eiRei with sijsjk = dsik. We

claim that d ∈ Cen(eiRei). By hypothesis, there exist isomorphisms µh : D −→ ehReh such that

ϕgh = µ−1
g µh for all sgh ∈ B′. Thus, for each d′ ∈ eiRei,

d′dsik = d′sijsjk

= sijsjk(d′)ϕijϕjk

= sijsjk(d′)µ−1
i µk

= dsik(d′)ϕik

= dd′sik.

Thus, d′d = dd′ and d ∈ Cen(eiRei), as claimed.

2.4. Corollary. Let B′ ⊆ B be solvable, and let ei ≤ ej ≤ ek in E with ei ≤ ek. If sij , sjk, sik ∈ B′,
then ϕik = ϕijϕjk.

Proof. Apply Lemmas 2.1 and 2.3.

We now characterize square-free D-algebras in terms of solvable bases. For a different characteriza-

tion, see Lemma 3.1 of [7].

2.5. Theorem. Let R be a basic indecomposable square-free ring with division ring D. Then R is

a D–algebra if and only if R has a solvable basis.

Proof. (=⇒) Let R = D ⊗K A for some square-free K–algebra A where K = CenD. We may

assume that E = {1⊗ ei : ei ∈ EA} is a complete set of orthogonal primitive idempotents for R where

EA = {e1, . . . , en} is a complete set of orthogonal primitive idempotents for A. Let BA = {sij : ei ≤ ej}
be a basis for A over EA, so that B = {1 ⊗ sij : ei ≤ ej} is a basis for R over E. For each i, let

µi : d 7−→ d⊗ ei. Then since eiAei ∼= K for each i, each µi : D −→ (1⊗ ei)R(1⊗ ei) is an isomorphism.

For each sij ∈ BA and d ∈ D,

(d⊗ ei)(1⊗ sij) = (d⊗ eisij) = (d⊗ sijej) = (1⊗ sij)(d⊗ ej).

So (d⊗ ei)ϕij = d⊗ ej , and (µi)ni=1 is a solution for B. Thus, B is a solvable basis for R.

(⇐=) Let E = {e1, . . . , en} be a complete set of orthogonal primitive idempotents for R and let

B = {sij : ei ≤ ej} be a solvable basis for R. Say (µi)ni=1 is a solution for B. Define ψ : D −→ R by

(d)ψ =
n∑
i=1

(d)µi.
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Observe that for all ei ≤ ej in E and all r ∈ R,

(d)ψ · eirej = (d)µi · eirej and eirej · (d)ψ = eirej · (d)µj .

The map ψ : D −→ R is clearly additive and since (d)µi(d′)µj = δij(dd′)µi, where δij is the Kronecker

delta, it follows that ψ is an isomorphism from D onto a division subring Dψ of R.

We claim next that if K = CenD, then Kψ = (K)ψ is the center of R. First, we note that for each

i, we have (K)µi = Cen(eiRei). Now suppose that r ∈ Cen(R). Then for each i, we have eir = rei, so

r = e1re1 + · · ·+ enren.

Clearly, eirei ∈ Cen(eiRei) = (K)µi. Next, observe that if eiRej 6= 0, then

(eirei)sij = sij(ejrej),

so ejrej = (eirei)ϕij or

(ejrej)µ−1
j = (eirei)µ−1

i ∈ K.

Thus, there exists some unique k ∈ K with (k)µi = eirei for all i = 1, . . . , n. That is, r = (k)ψ ∈ Kψ.

On the other hand, let d ∈ K. Then certainly, each (d)µi ∈ Cen(eiRei). So it will suffice to show

that for each i, j with eiRej 6= 0, and for each r ∈ R,

(d)µi · (eirej) = (eirej) · (d)µj .

But if eirej 6= 0, then eirej = eir
′eisij for some eir′ei ∈ eiRei. Thus, since (d)µi ∈ Cen(eiRei),

(d)µi · (eirej) = (d)µi · (eir′eisij)

= (eir′ei) · (d)µi · sij

= (eir′ei)sij · (d)µiϕij

= (eir′ei)sij · (d)µiµ−1
i µj

= (eirej) · (d)µj .

Thus, Cen(R) = Kψ as claimed.

Now let A be the Kψ subspace of R spanned by B. By Lemma 2.3, for each sij , sjk ∈ B, if sijsjk 6= 0,

then

sijsjk = dsik

for some d ∈ Cen(eiRei). But Cen(eiRei) = (K)µi, so there is a (necessarily unique) t ∈ K with

(t)µi = d. Then (t)ψ ∈ Cen(R) and

sijsjk = (t)ψsik.
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Thus, A is actually a Kψ–subalgebra of R. In fact, it is square free. Indeed, E is a complete set of

idempotents for A, and for each ei, ej , if eiAej 6= 0, then eiAej is one dimensional over Kψ generated

by sij .

Next, we claim that for each a ∈ A and each d ∈ D,

a(d)ψ = (d)ψa.

For this, it will clearly suffice to assume that a = sij for some eiRej 6= 0. But

((d)ψ)(sij) = ((d)µi)(sij)

= (sij)((d)µiϕij)

= (sij)((d)µj)

= (sij)((d)ψ),

so a(d)ψ = (d)ψa, as claimed.

Finally, the map τ : D ×A −→ R defined by

τ : (d, a) 7−→ ((d)ψ)a

is clearly K-bilinear and universal, so there is a ring isomorphism τ : D ⊗K A −→ R.

3. The Main Result.

Let R be a basic square-free ring with basic set E = {e1, . . . , et} and with quiver Q = Q(R). In this

section we shall show that under certain conditions a solvable quiver will imply that R is a D-algebra.

Since we want the path structure of Q to be reflected in the algebra of R, we impose a restriction on R

that will provide the desired connection between Q and R.

If E is some set of vertices in Q, then we say that R is transitive on E in case for all e, f, g ∈ E

eJfJg = 0 =⇒ eJf = 0 or fJg = 0.

We say that R is transitive if it is transitive on the set E of all vertices of Q and locally transitive

if it is transitive on the vertices of each cyclic component of Q. If R is transitive, then (see [7]) the

relation ≤ on E, defined in Section 2, is a partial order, and Q is the Hasse diagram for this poset. For

more on the property of transitivity for square-free rings see [7]. Much of the significance of transitivity

for us is given in the next pair of lemmas.
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3.1. Lemma. Let R be transitive. For each pair ei, ej ∈ E, the following are equivalent:

(a) ei ≤ ej;

(b) eiRej 6= 0;

(c) There is a d-path from ei to ej in Q.

In particular, ei0 ≤ ei1 ≤ · · · ≤ eik in Q iff there is a d-path in Q through the sequence

(ei0 , ei1 , . . . , eik).

Proof. The equivalence of (a) and (b) is by definition.

(b) ⇐ (c). If there is an arrow from ei to ek and an arrow from ek to ej , then eiJek 6= 0 and

ekJej 6= 0, so by transitivity, eiJekJej 6= 0. The conclusion follows by induction on the length of the

path.

(b)⇒ (c). We may assume ei 6= ej . If eiRej 6= 0, then eiJmej 6= 0 for some maximal m ≥ 1. If m =

1, then there is an arrow from ei to ej . If m > 1, then there is an ek with eiJ
mej ⊇ eiJekJm−1ej 6= 0.

So there is an arrow from ei to ek and, by induction, a d-path from ek to ej .

Observe that if R is transitive, then Q contains no directed cycles. Let

B = {sij : ei ≤ ej}

be a basis for R over E.

3.2. Lemma. If R is transitive, and if there is a d-path in Q through the sequence (ei0 , ei1 , . . . , eik)

of vertices in E, then si0i1 · · · sik−1ik 6= 0.

Proof. Suppose that e1, e2, e3 ∈ E and that there is a d-path through the sequence (e1, e2, e3). We

may assume that e1, e2, e3 are distinct. Then by Lemma 3.1, e1Re2 6= 0 and e2Re3 6= 0. So

e1Je2 = e1Re2 = e1Re1s12 6= 0,

and similarly, e2Je3 = s23e3Re3 6= 0. Thus, by transitivity, e1Je2Je3 6= 0, so that s12s23 6= 0. Now

induct.

3.3. Lemma. If R is transitive, and if ei ≤ ej ≤ ek ≤ e` in E, then there exists v ∈ ejRek with

si` = sijvsk`.

Proof. This follows immediately from the fact that since R is transitive and square-free, eiRe` =

eiRejRekRe` = sijejReksk`. See [7].
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Our next goal is to find sufficient conditions on R for it to have a solvable basis. For this we first

assume that R is transitive and indecomposable. We will prove the main result for this case, extend

that to stars of cyclic components, and then piece these together for the general result. A key part of

that is a lemma that gives a condition under which we can extend solvability from a subquiver to a

larger subquiver.

Let Q1 be a subquiver of Q. If B is a basis for R, then we set

B(Q1) = {sij ∈ B : there is a d-path from ei to ej in Q1}.

Let V ⊆ E. We denote by V + the subquiver of Q whose arrows are precisely those that lie on some

d-path of Q that originates at some e ∈ V . Similarly, we denote by V − the subquiver whose arrows

lie on some d-path of Q that terminates at some e ∈ V . So, the vertex set of V + is the subposet of Q
consisting of all upper bounds of the elements of V and the vertex set of V − is the subposet of all lower

bounds of the elements of V .

Next, we want to investigate some conditions under which a basis solvable on a subquiver can be

modified to create a basis solvable on a larger subquiver.

3.4. Lemma. Let R be an indecomposable square-free ring with quiver Q, and suppose that B is a

basis for R. Let Q1 and Q2 be disjoint subquivers with both B(Q1) and B(Q2) solvable. If there is an

arrow a from a vertex ei in Q1 to a vertex ej in Q2, then there is a basis B′ with B′(Q1 ∪{a}∪Q2)

solvable. In particular, if a subquiver Q′ of Q is a tree, then there is a basis B′ for R with B′(Q′)
solvable.

Proof. Let (µk)nk=1 be a sequence of isomorphisms µk :−→ ekRek that form solutions on both

B(Q1) and B(Q2). For each eh ≤ ek in Q let s′hk ∈ ehRek be given by

s′hk =
{
shjsjk, if eh ∈ Q1 and ek ∈ Q2;
shk, otherwise.

Then B′ = {s′hk : eh ≤ ek} is a basis for R. Moreover, the sequence (νk)nk=1 of isomorphisms given by

νk =
{
µjϕ

−1
s′kj
, if ek ∈ Q1 and ek ≤ ej ;

µk, otherwise

is a solution for B′(Q1 ∪ {a} ∪ Q2). The final statement is now a simple induction.

3.5. Lemma. Let R be a transitive square-free ring with quiver Q and basis B. Let Q1 be a

connected subquiver of Q, let a be an arrow of Q1, and let Q2 be the subquiver of Q1 obtained by

deleting the arrow a. Assume that B(Q2) is solvable. If a belongs to a bi-directed cycle of Q1, then

there is a basis B′ for R with B′(Q1) solvable.
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Proof. Let (µi)ni=1 be a sequence of isomorphisms µi : D −→ eiRei that form a solution for B(Q2).

Suppose that a is an arrow from ei to ej and belongs to the bi-directed cycle p ∪ q where p and q are

d-paths from e` to em. We may assume that a is an arrow on q. By Lemma 3.3 there is a v ∈ eiRej
with s`m = s`ivsjm. Thus,

ϕv = ϕ−1
`i ϕ`mϕ

−1
jm = µ−1

i µj .

For each eh ≤ ek in E define s′hk ∈ ehRek by

s′hk =
{
shivsjk, if eh ≤ ei ≤ ej ≤ ek;
shk, otherwise.

Then B′ = {s′hk : eh ≤ ek in E} is a basis for R and (µi)ni=1 is a solution for B′(Q1).

3.6. Lemma. Let H be a connected subquiver of Q, let u be a minimal element of Q, let w be a

maximal element of Q, let p0 be a d-path from u to w, and let X be a subquiver of u+ ∩ w− such

that p0 lies in X and every arrow in X lies on some d-path in X from u to w. Suppose there is a

basis B for R with B(H ∪ p0) solvable. If w ∈ H or if u ∈ H, then there is a basis B′ for R with

B′(H ∪X) solvable.

Proof. We’ll prove the case with w ∈ H; the other is dual. The proof will be by induction on

b = dimB(H ∪ X) − dimB(H ∪ p0), the difference between the dimensions of the bi-directed cycle

spaces of H ∪X and H ∪ p0. So suppose that b = 0. If there were some arrow a in X but not in H ∪p0,

then since there must be a d-path in X from u to w through a, and since a cannot be on p0, there is

some bi-directed cycle in X containing a, contrary to dimB(H ∪X) = dimB(H ∪ p0). So if b = 0, then

H ∪X = H ∪ p0, and we’re done.

So assume that b > 0. Then there must be some non-trivial d-path in X no arrow of which is in

H ∪ p0. Let p1 be such a d-path of maximal length. Say the initial vertex of p1 is x and the terminal

vertex is y. If there is a vertex of p1 other than y that is the initial vertex of a bi-directed cycle in X, let

x′ be the greatest such vertex. Otherwise let x′ = x. If there is a vertex different from x′ on p1 between

x′ and y that is the terminal vertex of a bi-directed path in X, then let y′ be the smallest such vertex.

Otherwise, let y′ = y. Let p be the sub d-path of p1 from x′ to y′, and let X ′ = X \ p. Then p0 is in X ′

and every arrow in X ′\H lies on a d-path from u to w in X ′. But clearly, dimB(H∪X ′) < dimB(H∪X),

so by induction, there is a basis B′ for R with B′(H ∪X ′) solvable. Now every vertex of p other than

x′ and y′ has valence 2 in H ∪ X. Thus, by Lemma 3.4, there is a basis B′′ for R with B′′(H ∪ X)

solvable.

3.7. Lemma. Let R be an indecomposable transitive square-free ring with quiver Q. If Q is solvable,

then R has a solvable basis.
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Proof. Since Q is connected, there exist sequences (u1, . . . , un) and (w1, . . . , wn) of minimal and

maximal elements of Q, with repetitions allowed, such that

ui, ui+1 ≤ wi for all i < n and un ≤ wn,

and Q = {u1, . . . , un}+ ∩ {w1, . . . , wn}−. We begin with some notation. For each m let

Fm = {u1, . . . , um}+ ∩ {w1, . . . , wm}−,

and

Gm = {u1, . . . , um}+ ∩ {w1, . . . , wm−1}−.

To prove this lemma, it suffices to show that for each m,

(i) For 1 ≤ m ≤ n, if B is a basis for R with B(Gm) solvable, then there is a basis B′ for R with

B′(Fm) solvable; and

(ii) For 1 ≤ m < n, if B is a basis for R with B(Fm) solvable, then there is a basis B′ for R with

B′(Gm+1) solvable.

We will show (i); the arguments for (ii) are similar.

So let m = 1. Then there must be a d-path p0 from u1 to w1. By Lemma 3.4 there is a basis B for

R with B(p0) solvable. Then by Lemma 3.6, there is a basis B′ for R with B′(u+
1 ∩w

−
1 ) solvable. Next,

let 1 < m ≤ n and assume that B(Gm) is solvable. For 0 ≤ k < m, set

Hk = ({um−k, . . . , um}+ ∩ w−m) ∪Gm.

We will show by induction on k that there is a basis B′ for R with B′(Hk) solvable. Let k = 0. Then

there is a d-path p0 from um to wm, so by Lemmas 3.4 and 3.5 there is a basis B′′ for R with B′′(Gm∪p0)

solvable. Thus, by Lemma 3.6 there is a basis B′ for R with B′(H0) solvable. Now let 0 ≤ k < m−1 and

assume there is a basis B forR with B(Hk) solvable. If um−k−1 ∈ {um−k, . . . , um} or if there is no d-path

from um−k−1 to wm, then Hk+1 = Hk, and we’re done. Otherwise, by hypothesis about the sequences

(u1, . . . , un) and (w1, . . . , wn), there must be sets U ′ = {um−k−1 = u′1, u
′
2, . . . , u

′
h} ⊆ {um−k−1, . . . , um}

and W ′ = {w′1, w′2, . . . , w′h = wm} ⊆ {wm−k−1, . . . , wm} for which U ′ and W ′ form a weak n-crown.

So since Q is solvable, Lemma 1.2 guarantees a pair of d-paths p0 from u′1 to w′h and q from some

u′i ∈ U ′ \{u′1} to some w′j ∈W ′ \{w′h} that meet in some common vertex v. But d-paths from u′1 to w′j
and from u′i to w′h must be in Hk, so that p0 is in Hk. In particular, Hk ∪ p0 = Hk, and so by Lemma

3.6, there is a basis B′ for R such that B′(Hk+1) is solvable. By induction on k, then, there is a basis

B′ for R with B′(Hm−1) solvable. But Hm−1 = Fm, so we are done with (i).
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3.8. Theorem. If R is a locally transitive indecomposable square-free ring with solvable quiver,

then R has a solvable basis and hence is a D-algebra.

Proof. By Theorem 2.2 we may assume that R is basic. By Lemma 1.3 we may assume that the

cyclic components of the quiver Q of R are labeled in a proper order {S1, . . . , Sn}. By Lemma 3.7 for

each i = 1, . . . , n there is a basis Bi for R with Bi(Si) solvable. For each tree Tj in the subquiver of cut

edges of Q there is a basis solvable on Tj . So by Lemma 3.4, for each i = 1, . . . n, we may assume that

Bi(St(Si)) is solvable. Finally, use Lemma 3.4 and induction on n to find a basis B that is solvable on

St(S1) ∪ St(S2) ∪ · · · ∪ St(Sn) = Q. By Theorem 2.5, R is a D-algebra.

4. Matrix Representations.

If R = D ⊗K A is a D-algebra, then R acts essentially like the split K-algebra A. For example, a

D-automorphism of R is just a ring automorphism α of R such that for some K-automorphism α of

A (with α and α now viewed as left operators)

α(d⊗ a) = d⊗ α(a),

for all d ∈ D and a ∈ A. Thus, the D-automorphism groups of R are completely determined by the

K-automorphism groups of A. For square-free algebras these groups have been studied extensively.

(See, for example, [2].) So if R is a square-free ring satisfying the hypotheses of Theorem 3.8, then the

entire analysis of the K-automorphism groups of the square-free algebra A given in [2] translates to

that of the D-automorphism groups of R.

In this section, however, we want to describe how the D-algebras R that are locally transitive square-

free rings with solvable quivers can be realized as twisted matrix rings. Thanks to Theorem 2.2 we can

restrict ourselves to basic rings. The extension of these representations to the more general case is

straightforward.

First, though, let R = D ⊗K A be an arbitrary basic square-free D-algebra. Then the K-algebra A

is split, basic, and square-free. Moreover, if E = {e1, . . . , en} is a basic set of primitive idempotents for

A, then {1⊗ e1, . . . , 1⊗ en} is a basic set for R, and if J is the Jacobson radical for A, then D ⊗ J is

the Jacobson radical for R. In particular, both A and R have the same quiver Q, and R is transitive

(locally transitive) iff A is.

Now let R = D ⊗K A be a basic, locally transitive, indecomposable square-free ring with quiver Q
and division ring D, and assume that E = {e1, . . . , en} is a basic set of primitive idempotents for A.

Define a relation � on E by

ei � ej ⇐⇒ there is a d-path in Q from ei to ej .
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Let ei and ej belong to the same cyclic component of Q. By Lemma 3.1, ei � ej iff eiAej 6= 0. Thus,

by Theorem 2.3 of [7], restricted to each cyclic component, this relation is a partial order with Hasse

diagram the restriction of Q to that component. However, shrinking each cyclic component of Q to

a point yields a tree in which there is at most one d-path from any one vertex to another. Thus, the

relation � is a partial order on all of E and the Hasse diagram of this poset, called the regular poset

of A and of R, is Q. Therefore, we can assume that the labels for the elements of E have been chosen

so that i ≤ j if ei � ej , for all i, j.

If Λ is an arbitrary ring, then the Λ incidence ring ΛE of a finite poset (E,�) can be realized as

the ring of all n × n matrices [[aij ]] over Λ with aij = 0 whenever ei 6� ej . If K is a field, then the

K-incidence algebra KE of (E,�) is a subalgebra of the algebra of all n× n upper triangular matrices

over K. For each 1 ≤ i, j ≤ n let eij be the (i, j) matrix unit in Mn(K). Then the K-incidence algebra

KE has K-basis

B(E) = {eij ∈Mn(K) | ei � ej in E}.

If A is transitive with regular poset E, then in fact, A is isomorphic to the subalgebra KξE of upper

triangular matrices with K-basis B(E) and with multiplication twisted by a two-dimensional cocycle ξ

of the poset E with coefficients in K∗. (See [6] or Theorem 2.4 of [1] or Theorem 1.14 of [2].)

More generally, suppose that A is locally transitive. Consider the K-path algebra KQ of the quiverQ
of A. By Gabriel’s Theorem (see [10], Section 4; or [4] Theorem III.1.9) there is a surjective K-algebra

homomorphism, called a Gabriel homomorphism for A, γ : KQ −→ A from KQ onto A with

γ(ei) = ei for each ei ∈ E. Now suppose that p and q are two d-paths in Q from e to f for which p ∪ q
forms a bi-directed cycle in Q. Then p and q must belong to the same cyclic component, and so since

A is locally transitive, by Lemma 3.2, eAf 6= 0. Thus, dimK(eAf) = 1 and so

eAf = Kγ(p) = Kγ(q).

Thus, for each such pair (p, q) of d-paths in Q there is a non-zero ρ(p, q) ∈ K∗ with

γ(p) = ρ(p, q)γ(q).

Next, let I be the ideal

I = 〈p− ρ(p, q)q : p ∪ q is a bidirected cycle in Q〉

of the K-path algebra KQ. Let A = KQ/I, and let γ : KQ −→ A be the natural surjective algebra

homomorphism. Since I ≤ ker(γ), it follows that γ factors through γ, say ϕ : A −→ A with γ = ϕ ◦ γ.

Also, if p and q are two d-paths from e to f , then p and q factor as

p = p1p2 · · · pt and q = q1q2 · · · qt,
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where for each 1 ≤ k ≤ t, either pk = qk or pk ∪ qk is a bi-directed cycle. Letting ρ(pk, qk) = 1 if

pk = qk, we can define ρ(p, q) ∈ K∗ by

ρ(p, q) = ρ(p1, q1)ρ(p2, q2) · · · ρ(pt, qt).

Then

γ(p) = ρ(p, q)γ(q).

For each ei ∈ E, let ei = ei + I ∈ A. Note that {e1, . . . , en} is a basic set of primitive idempotents

for A. Suppose e, f ∈ E with eA f 6= 0. A routine check shows that dimK(eA f) = 1 and thus, A is

square-free. If e 6= f and e(KQ)f 6= 0, then there is a path from e to f in Q. Since I contains no

directed paths, we can conclude that A is transitive.

Thus, A is a transitive square-free K-algebra and hence A ∼= KξE for some two-dimensional cocycle

ξ of E. Combining these observations with Theorem 3.8, we have the following matrix realization of

locally transitive square-free rings with solvable quivers.

4.1. Theorem. Let R be a basic, locally transitive, indecomposable square-free ring with solvable

quiver Q on the basic set E = {e1, . . . , en}, and with division ring D. The relation defined on E by

ei � ej ⇐⇒ there is a d-path in Q from ei to ej

is a partial order and the Hasse diagram of the poset (E,�) is isomorphic to the digraph Q. Then

there is a two-dimensional cocycle ξ of the poset E with coefficients in K = CenD such that R is

isomorphic to a factor ring of the D incidence ring DξE = D⊗K (KξE) of E twisted by ξ. Finally,

R is transitive iff R is isomorphic to the twisted D-incidence ring DξE.
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