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The purpose of this paper is to describe an unsuccessful attempt
to prove that the telescope conjecture (see 1.13 below for the precise
statement) is false for n ≥ 2 and each prime p. At the time the it was
originally formulated over 20 years ago (see [Rav84]), the telescope
conjecture appeared to be the simplest and most plausible statement
about the question at hand, namely the relation between two different
localization functors. We hope the present paper will demonstrate that
this is no longer the case. We will set up a spectral sequence converging
to the homotopy of one of the two localizations (the geometrically de-
fined telescope) of a certain spectrum, and it will be apparent that only
a bizarre pattern of differentials would lead to the known homotopy of
the localization defined in terms of BP -theory, the answer predicted
by the telescope conjecture. While we cannot exclude such a pattern,
it is certainly not favored by Occam’s razor.

No use will be made here made of the parametrized Adams spectral
sequence of [Rav92b]; we will say more about that approach in a fu-
ture paper. Instead we will rely on some constructions related to the
EHP sequence which are described in §3, where we define the spectra
y(n) and Y (n), and a variant of the Eilenberg-Moore spectral sequence
(which we call the Thomified Eilenberg-Moore spectral sequence) de-
scribed in §2.4.
§1 is an expository introduction to the telescope conjecture. We

define telescopes and recall the nilpotence (1.1), periodicity (1.4) and
thick subcategory (1.12) theorems of Devinatz, Hopkins and Smith
([DHS88] and [HS98]). We also recall the definitions of Bousfield lo-
calization and related concepts and the Bousfield localization theorem
(1.8). We then state four equivalent formulations of the telescope con-
jecture in 1.13.

In §2 we introduce the various spectral sequences that we will use.
These include the classical Adams (§2.1) and Adams-Novikov (§2.2)
spectral sequences. We also need the localized Adams spectral sequence
of Miller [Mil81] (§2.3), for which we prove a convergence theorem 2.13.
This is the spectral sequence we will use to compute the homotopy of
our telescope Y (n) and see that it may well differ from the answer pre-
dicted by the telescope conjecture. In §2.4 we introduce the Thomified
Eilenberg-Moore spectral sequence and its localized form. In certain
cases (2.26 and 2.27) we identify its E2-term as Ext over a Massey-
Peterson algebra. All of these spectral sequences require the use of
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Ext groups over various Hopf algebras, and we review the relevant ho-
mological algebra in §2.5. This includes two localizations ((2.34) and
(2.35)) of the Cartan-Eilenberg spectral sequence which are new as far
as we know.

In §3 we use the EHP sequence to construct the spectrum y(n) and
its telescope Y (n). We describe the computation of π∗(Lny(n)) using
the Adams-Novikov spectral sequence, and then state our main compu-
tational conjecture, 3.16, which says that the localized Adams spectral
sequence gives a different answer for π∗(Y (n)) when n > 1. This would
disprove the telescope conjecture, which predicts that Lny(n) = Y (n).
The conjectured difference between π∗(Lny(n)) and π∗(Y (n)) can be
described very simply: π∗(Lny(n)) is finitely generated as a module
over the ring K(n)∗[vn+1, vn+2, . . . , v2n], whereas, if our main conjec-
ture is correct, then π∗(Y (n)) will have no finite presentation over this
ring.

Our construction of y(n) gives us a map

Ω3S1+2pn f−→ y(n),

with which we originally hoped to prove Conjecture 3.16 and is the rea-
son for the title of this paper. In §4 we recall some properties Ω3S1+2pn ,
including the Snaith splitting (4.2) and its ordinary homology as a mod-
ule over the Steenrod algebra (Lemma 4.7). In §4.3 we recall Tamaki’s
unpublished computation of its Morava K-theory using his formula-
tion [Tam94] of the Eilenberg-Moore spectral sequence, and in §4.4 we
show that similar methods can be used to compute its Y (n)∗-theory.
These are not needed for our main results and are included due to their
independent interest.

In §5 we describe our program to prove Conjecture 3.16 and thereby
disprove the telescope conjecture for n > 1. Our method is to construct
a map (derived from the map f above) to the localized Adams spectral
sequence for Y (n)∗ from a localized Thomified Eilenberg-Moore spec-
tral sequence converging to Y (n)∗(Ω

3S1+2pn). This map turns out to
be onto in each Er, so differentials in the latter spectral sequence are
determined by those in the former, which are described in Conjecture
5.15. The source spectral sequence has far more structure than the
target, and we had hoped to use this to prove 5.15. There are three
such structures, each of which figures in the program, namely:

(i) Ω3S1+2pn is an H-space, so the spectral sequence is one of Hopf
algebras.

(ii) It has a Snaith splitting which must be respected by differentials.
(iii) The pth Hopf map induces an endomorphism of our spectral se-

quence, which is identified in Lemma 5.16.
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Previously we had thought that this structure could be used to con-
struct certain permanent cycles ỹi,j mapping to bn+i,j in the localized
Adams spectral sequence that would force the latter to collapse from
a certain stage. Unfortunately, this is not the case. For more details,
see the comments after Conjecture 5.12.

It is pleasure to acknowledge helpful conversations with Fred Co-
hen, Bill Dwyer, Emmanuel Dror Farjoun, Mike Hopkins, Nick Kuhn,
Haynes Miller, Hal Sadofsky, Brooke Shipley, and Dai Tamaki. We also
thank the referee for many helpful suggestions.

1. The telescope conjecture and Bousfield localization

1.1. Telescopes. The telescope conjecture is a statement about the
stable homotopy groups of finite complexes. There is not a single non-
trivial example for which such groups are completely known. There
are many partial results, especially about the stable homotopy groups
of spheres. Unstably the situation is only slightly better. We have
complete knowledge of π∗(X) for a finite complex X only in the cases
where X is known to be an Eilenberg-Mac Lane space, such as when
X is a surface of positive genus.

Experience has shown that one can get interesting information about
π∗(X) in the stable case in the following way. Suppose one has a stable
map of the form

ΣdX
f−→ X

for which all iterates are essential; this can only happen if d ≥ 0. Such
a map is said to be periodic. We say that f is nilpotent if some iterate
of it is null. In any case we can define the telescope f−1X to be the
direct limit of the system

X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · · .

This will be contractible if f is nilpotent. In the (rare) cases when f is
periodic, the computation of π∗(f

−1X) is far more tractable than that
of π∗(X).

The map f induces an endomorphism of π∗(X), which we will denote
abusively by f , making π∗(X) a module over the ring Z[f ]. Since
homotopy commutes with direct limits, we have

π∗(f
−1X) = π∗(X)⊗Z[f ]

Z[f, f−1].

The telescope conjecture is a statement about this graded group.
Before stating it we will describe some motivating examples. We

assume that all spaces and spectra in sight are localized at a prime p.
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• For any spectrum X let f be the degree p map. It induces multi-
plication by p in homotopy and homology and induces an isomor-
phism in rational homology. If H∗(X; Q) is nontrivial, i.e., if the
integer homology of X is not all torsion, then all iterates of the
degree p map are essential.

In this case the telescope p−1X is the rationalization XQ of X
with

π∗(XQ) = π∗(X)⊗Q = H∗(X; Q),

the rational homotopy of X. It is a rational vector space.
• Let V (0) be the mod p Moore spectrum. For each prime p Adams

[Ada66] constructed a map

ΣdV (0)
α−→ V (0) where d =

{
8 if p = 2
2p− 2 if p is odd.

This map induces an isomorphism in classical K-theory and all
iterates of it are nontrivial. π∗(α

−1V (0)) has been computed ex-
plicitly by Mahowald [Mah81] for p = 2 and Miller [Mil81] for odd
primes. It is finitely presented as a module over Z[α, α−1]. The
image of π∗(V (0)) in π∗(α

−1V (0)) is known, and this gives us a
lot of information about the former.

By analogy with the previous example, one might expect π∗(α
−1V (0))

to be K∗(V (0)), but the situation here is not so simple. The an-
swer is however predictable by K-theoretic or BP-theoretic meth-
ods; we will say more about this later.
• For odd p let V (1) denote the cofiber of the Adams map α. It is

a CW-complex with one cell each in dimensions 0, 1, 2p − 1 and
2p. Smith [Smi71] and Toda [Tod71] have shown that for p ≥ 5
there is a periodic map

Σ2p2−2V (1)
β−→ V (1).

In this case the homotopy of the telescope is not known.

The results of Devinatz-Hopkins-Smith ([DHS88] and [HS98]) allow
us to study telescopes in a very systematic way. They indicate that
BP-theory and Morava K-theory are very useful here. First we have
the nilpotence theorem characterizing nilpotent maps.

Theorem 1.1 (Nilpotence theorem). For a finite p-local spectrum X,
a map

ΣdX
f−→ X
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is nilpotent if and only if the induced map on BP∗(X) is nilpotent.
Equivalently, it is nilpotent if and only if the induced map on K(n)∗(X)
is nilpotent for each n.

For the study of periodic maps two definitions are useful.

Definition 1.2. A p-local finite complex X has type n if n is the small-
est integer for which K(n)∗(X) is nontrivial.

Definition 1.3. A map

ΣdX
f−→ X

is a vn-map if K(n)∗(f) is an isomorphism and K(m)∗(f) = 0 for
m 6= n. (The spectrum X here need not be finite.)

A finite complex of type n does not admit a vm-map for m > n;
this follows from the algebraic properties of the target category of the
BP-homology functor. For m < n, the trivial map is a vm-map. The
cofiber of a vn-map on a type n complex is necessarily a complex of
type n + 1. In the three examples above we have a such a map for
n = 0, 1 and 2 respectively.

Now we can state the periodicity theorem of [HS98].

Theorem 1.4 (Periodicity theorem). Every type n finite complex ad-
mits a vn-map. Given two such maps f and g there are positive integers
i and j such that f i = gj.

Corollary 1.5. For a type n p-local finite complex X, any vn-map
f : ΣdX → X yields the same telescope f−1X, which we will denote by

v−1
n X or X̂.

1.2. Bousfield localization and Bousfield classes.

Definition 1.6. Given a homology theory h∗, a spectrum X is h∗-local
if for each spectrum W with h∗(W ) = 0, [W,X] = 0. An h∗-localization
X → LhX is an h∗-equivalence from X to an h∗-local spectrum. We
denote the fiber of this map by ChX. If h∗ is represented by a spectrum
E we will write LE and CE for Lh and Ch. The case E = v−1

n BP is
of special interest, and we denote the corresponding functors by Ln and
Cn.

The following properties of localization are formal consequences of
these definitions.

Proposition 1.7. If LhX exists it is unique and the functor Lh is
idempotent. The map X → LhX is terminal among all h∗-equivalences
from X and initial among all maps from X to h∗-local spectra. ChX
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is h∗-acyclic and the map ChX → X is terminal among all maps from
h∗-acyclics to X. The homotopy inverse limit of h∗-local spectra is
h∗-local, although the functor Lh (if it exists) need not commute with
homotopy inverse or direct limits. The homotopy direct limit of local
spectra need not be local.

The definitive theorem in this subject is due to Bousfield [Bou79].

Theorem 1.8 (Bousfield localization theorem). The localization LhX
exists for all spectra X and all homology theories h∗.

Roughly speaking, one constructs ChX by taking the direct limit
of all h∗-acyclic spectra mapping to X. (This is not precisely correct
because of set theoretic problems; there are too many such maps to
form a direct limit. Bousfield found a way around this difficulty.) A
variant on this procedure is to consider the homotopy direct limit of
all finite h∗-acyclic spectra mapping to X, which we denote by Cf

hX.
(Here f stands for finite, and there are no set theoretic problems.) We

denote the cofiber of Cf
hX → X by LfhX.

Definition 1.9. A localization functor Lh is finite if Lh = Lfh, i.e.,
if ChX is always a homotopy direct limit of finite h∗-acyclic spectra
mapping to X.

Proposition 1.10. If the functor Lh is finite then

(i) it commutes with homotopy direct limits,
(ii) the homotopy direct limit of h∗-local spectra is local,

(iii) LhX = X ∧ LhS0 for all X, and
(iv) Lh is the same as Bousfield localization with respect to the homol-

ogy theory represented by LhS
0.

It can be shown [Rav84, Prop. 1.27] that the four properties listed
in 1.10 are equivalent. We say that a localization functor is smashing
if it has them. Thus 1.10 says that every finite localization functor is
smashing. Bousfield conjectured [Bou79, 3.4] the converse, that every
smashing localization functor is finite. The functor Ln is known to be
smashing [Rav92a, Theorem 7.5.6], but if the telescope conjecture fails,
it is not finite for n ≥ 2.

Definition 1.11. Two spectra E and F are Bousfield equivalent if they
have the same acyclics (i.e. if E∗(X) = 0 iff F∗(X) = 0,) or equiva-
lently if LE = LF . The corresponding equivalence class is denoted by
〈E〉, the Bousfield class of E. We say that 〈E〉 ≥ 〈F 〉 if E∗(X) = 0
implies F∗(X) = 0.
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Dror Farjoun [Far96] uses the notation X � Y (Y can be built from
X by cofibrations) in an unstable context to mean 〈X〉 > 〈Y 〉.

The following consequence of 1.1 is very useful, e.g. it was used to
prove 1.4. A subcategory of the stable homotopy category of finite
complexes is thick if it is closed under cofibrations and retracts. One
example is the subcategory of h∗-local finite spectra for a given h. The
following result of [DHS88] classifies all thick subcategories.

Theorem 1.12 (Thick subcategory theorem). Any nontrivial thick sub-
category of the stable homotopy category of p-local finite complexes is
the category Cn of p-local finite K(n − 1)∗-acyclic spectra for some
n ≥ 0.

Note that C0 is the entire category of p-local finite spectra,

C0 ⊃ C1 ⊃ C2 ⊃ . . . ,

and the intersection of all these is the trivial subcategory consisting of
a point.

This dry sounding theorem is a useful tool. Suppose one wants to
prove that all p-local finite spectra of type ≥ n satisfy a certain prop-
erty, say that they are all demented. (This example is due to John
Harper.) If one can show that the subcategory of demented spectra is
thick, then all that remains is to show that a single one of type n is
demented. If one is demented they all are demented. Conversely, if we
can find a single type n spectrum that is not demented, then none of
them are.

1.3. The telescope conjecture. Now we will discuss several equiva-
lent formulations of the telescope conjecture.

Telescope conjecture 1.13. Choose a prime p and an integer n ≥ 0.

Let X be a p-local finite complex of type n (1.2) and let X̂ be the
associated telescope (1.5). Then

(i) X̂ = LnX.

(ii) 〈X̂〉 = 〈K(n)〉.
(iii) The Adams-Novikov spectral sequence for X̂ converges to π∗(X̂).

(iv) The functors Ln and Lfn are the same if Ln−1 = Lfn−1.

We will sketch the proof that the four statements above are equiva-
lent.

The set of K(n − 1)∗-acyclic finite p-local spectra satisfying (i) is
thick. The same is true for (ii) and for the statement that

〈LnX〉 ≤ 〈K(n)〉.(1.14)
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Thus if we can find a type n X with this property it will follow that (i)
and (ii) are equivalent. One can show that (1.14) holds if the Adams-
Novikov E2-term for X has a horizontal vanishing line; this means that
LnX can be built out of K(n) with a finite number of cofibrations. Such
an X can be constructed using the methods described in [Rav92a, §8.3].

For the third statement, the Adams-Novikov spectral sequence for

LnX (which is BP∗-equivalent to X̂) was shown in [Rav87] to converge

to its homotopy, so it also converges to that of X̂ iff (i) holds.
For the fourth statement, since the functors Ln and Lfn are both

smashing, they commute with homotopy direct limits. This means
that if they agree on finite complexes, they agree on all spectra. For

K(n − 1)∗-acyclic X it is known that LfnX = X̂ (see [Rav93b], Miller
[Mil92] or Mahowald-Sadofsky [MS95]) so (i) says the two functors
agree on such X. For finite p-local X of smaller type, the methods of
[Rav93b, §2] show that Cf

n−1 (the fiber of X → Lfn−1X) is a homotopy
direct limit of type n finite complexes, so LnX = LfnX.

Any attempt to prove 1.13 is likely to rely on 1.12. It is easy to
show that the set of K(n − 1)∗-acyclic finite spectra satisfying 1.13(i)
is thick. Thus one can prove or disprove the telescope conjecture if

we can compare π∗(LnX) with π∗(X̂) for a single type n spectrum X.
The telescope conjecture for n = 1 follows from the computations of

Mahowald [Mah81] and Miller [Mil81] of π∗(̂V (0)) which showed that
agrees with the previously known value of π∗(L1V (0)). Alternately we
can disprove the telescope conjecture by finding a spectrum Y (which
need not be finite) for which LfnY 6= LnY .

The groups π∗(LnX) (or π∗(LnY )) and π∗(X̂) (or π∗(L
f
nY )) can be

computed with variants of the Adams spectral sequence. These meth-
ods will be discussed in the next section.

The spectrum we will use, y(n), is a certain Thom spectrum which
will be constructed in §3. We will use the Adams-Novikov spectral
sequence to show (Corollary 3.12) that π∗(Lny(n)) is finitely gener-
ated over a certain ring R(n)∗ defined below in (3.13); this is relatively
easy. A far more difficult calculation (Conjecture 3.16) using the local-
ized Adams spectral sequence (described in §2.3) comes quite close to
showing that π∗(L

f
ny(n)) is not finitely generated over R(n)∗ for n > 1,

which would disprove the telescope conjecture.

1.4. Some other open questions. The spectrum y(n) of §3 has a
telescope Y (n) associated with it. Conjecture 3.9 below says that
1.13(ii) holds with K(n) replaced by Y (n). Computing π∗(Y (n)) is
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the main object of this paper. Each Y (n) is a module over a spectrum
T∞ (4.3) and we suspect (4.4) that T∞ has the same Bousfield class as
the sphere spectrum.

The functors Ln could be called chromatic localizations. There are
natural transformations from Ln+1 to Ln, so for each spectrum X we
have an inverse system

L0X ←− L1X ←− L2X ←− · · · ,
and we can ask if the natural map from X to the homotopy inverse limit
is an equivalence. This is the chromatic convergence question. The
chromatic convergence theorem of Hopkins and the author [Rav92a,
7.5.7] says that this is the case for p-local finite spectrum X.

The telescopic convergence question concerns the inverse limit of the
LfnX, its telescopic localizations. We know that there are maps

X −→ LfnX −→ LnX

and that holimLnX ' X, so X is a retract of holimLfnX. It suffices
to answer this question for the case X = S0, since LfnX = X ∧ LfnS0

(Lfn is smashing) and smashing with a finite complex preserves inverse
limits.

2. Some variants of the Adams spectral sequence

The Adams spectral sequence for π∗(X) is derived from the following
Adams diagram.

X0 X1 X2 · · ·

K0 K1 K2

u

g0

u

g1

u

u

g2

u u

(2.1)

Here Xs+1 is the fiber of gs. We get an exact couple of homotopy groups
and a spectral sequence with

Es,t
1 = πt−s(Ks) and dr : Es,t

r → Es+r,t+r−1
r .

This spectral sequence converges to π∗(X) if the homotopy inverse
limit lim←Xs is contractible and certain lim1 groups vanish. When X
is connective, the Adams spectral sequenceis generally displayed like a
first quadrant spectral sequence. For more background, see [Rav86].

Now suppose we have a generalized homology theory represented by
a ring spectrum E. Then the canonical E-based Adams resolution for
X is the diagram (2.1) with Ks = E ∧Xs. More generally an E-based
Adams resolution for X is such a diagram where Ks is such that the
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map gs ∧ E is the inclusion of a retract. Under certain hypotheses
on E the resulting E2-term is independent of the choice of resolution
and can be identified as an Ext group. The classical Adams spectral
sequence is the case where E = H/p, the mod p Eilenberg-Mac Lane
spectrum, and the Adams-Novikov spectral sequence is the case where
E = BP , the Brown-Peterson spectrum. We will have occasion to use
a noncanonical Adams resolution below for a case where E = H/p.
Then the condition on the diagram is that H∗(gs) be monomorphic for
each s.

2.1. The classical Adams spectral sequence. Here we have

Es,t
2 = ExtA∗(Z/(p), H∗(X)),

where A∗ is the dual Steenrod algebra, H∗(X) is the mod p homology
of X, and Ext is taken in the category of A∗-comodules. This group is
the same as ExtA(H∗(X),Z/(p)), where H∗(X) is regarded as a module
over the Steenrod algebra A. This group is not easy to compute in most
cases. There is not a single nontrivial example where X is finite and
this group is completely known, although there are good algorithms for
computing it in low dimensions.

We recall the structure of A∗. When working over a field k we will
use the notation P (x) and E(x) to denote polynomial and exterior
algebras over k on x. As an algebra we have

A∗ =


P (ξ1, ξ2, . . . ) with |ξi| = 2i − 1

for p = 2
P (ξ1, ξ2, . . . )⊗ E(τ0, τ1, . . . ) with |ξi| = 2pi − 2

and |τi| = 2pi − 1
for p > 2.

For odd primes we will denote the polynomial and exterior factors by
P∗ and Q∗ respectively. For p = 2, P∗ and Q∗ will denote P (ξ2

i ) and
E(ξi) respectively. The coproduct is given by

∆(ξi) =
∑

0≤j≤i

ξp
j

i−j ⊗ ξj where ξ0 = 1.

and ∆(τi) = τi ⊗ 1 +
∑

0≤j≤i

ξp
j

i−j ⊗ τj.

In §2.5 we will review some facts about Ext groups over Hopf algebras
such as A∗, which we will refer to here when needed.

In §3 we will construct a spectrum y(n) with

H∗(y(n)) =

{
P (ξ1, . . . , ξn) for p = 2
P (ξ1, . . . , ξn)⊗ E(τ0, . . . , τn−1) for p > 2.
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Let

B(n)∗ =

{
A∗/(ξ1, . . . , ξn) for p = 2
A∗/(ξ1, . . . , ξn, τ0, . . . , τn−1) for p > 2

(2.2)

Then we have H∗(y(n)) = A∗2B(n)∗Z/(p), and we can use the change-
of-rings isomorphism (2.30) to prove

Proposition 2.3. With notation as above

ExtA∗(Z/(p), H∗(y(n))) = ExtB(n)∗(Z/(p),Z/(p)).

For future reference we record some information about this Ext
group. For a fixed value of n let

P ′∗ =

{
P (ξn+1, ξn+2, . . . ) for p > 2
P (ξ2

n+1, ξ
2
n+2, . . . ) for p = 2

(2.4)

Q′∗ =

{
E(τn, τn+1, . . . ) for p > 2
E(ξn+1, ξn+2, . . . ) for p = 2

(2.5)

Then we have a Hopf algebra extension (2.31)

P ′∗ −→ B(n)∗ −→ Q′∗(2.6)

and a Cartan-Eilenberg spectral sequence (2.32) converging to the
group of 2.3 with

E2 = ExtP ′∗(Z/(p),ExtQ′∗(Z/(p),Z/(p)))
= ExtP ′∗(Z/(p), V

′).

where

V ′ = P (vn, vn+1, . . . ).(2.7)

The structure of V ′ as a comodule over P ′ is given in 2.15. The elements
vn+k for 0 ≤ k ≤ n are permanent cycles. In §2.3 we will consider the
effect of inverting vn.

2.2. The Adams-Novikov spectral sequence. Here we have

Es,t
2 = ExtBP∗(BP )(BP∗, BP∗(X)).

Here we are taking Ext in the category of comodules over the Hopf alge-
broid BP∗(BP ). The difficulty of computing this group is comparable
to the classical case.

The structure of BP∗(BP ) is as follows. As algebras we have

BP∗(BP ) = BP∗[t1, t2, . . . ] with |ti| = 2pi − 2.
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It is not a Hopf algebra (i.e., a cogroup object in the category of alge-
bras), but a Hopf algebroid, which is a cogroupoid object in the cat-
egory of algebras. (For more discussion of this definition see [Rav86,
A1.1] or [Rav92a, B.3].) This means that in addition to a coproduct
map ∆ there is a right unit map ηR : BP∗ → BP∗(BP ). The for-
mulas for these maps involve the formal group law and are somewhat
complicated. We will give approximations for them now. Let

I = (p, v1, v2, . . . ) ⊂ BP∗.

Then we have

∆(ti) ≡
∑
j

tj ⊗ tp
j

i−j mod I where t0 = 1

and ηR(vi) ≡
∑
j

vjt
pj

i−j mod I2 where v0 = p.

There is an analog of (2.30) for Hopf algebroids stated as A1.3.12 in
[Rav86]. We have

BP∗(y(n)) = BP∗/In[t1, . . . , tn].(2.8)

The analog of 2.3 is the following.

Corollary 2.9.

ExtBP∗(BP )(BP∗, BP∗(y(n))) = ExtBP∗(BP )/(t1,... ,tn)(BP∗, BP∗/In).

When X is a finite complex of type n, the Adams-Novikov E2-term

for X̂ is surprisingly easy to compute. In some cases we can get a
complete description of it, quite unlike the situation for X itself. It was
this computability that originally motivated the second author’s interest

in this problem. For such X we know that BP∗(X̂) = BP∗(LnX) =
v−1
n BP∗(X), and BP∗(X) is always annihilated by some power of the

ideal

In = (p, v1, . . . , vn−1) ⊂ BP∗.

More generally if X is a connective spectrum in which each element
of BP∗(X) is annihilated by some power of In, we have BP∗(LnX) =
v−1
n BP∗(X). The results of [Rav87] and the smash product theorem

[Rav92a, 7.5.6] imply that the Adams-Novikov spectral sequence for
LnX converges to π∗(LnX).

Now assume for simplicity that BP∗(X) is annihilated by In itself;
this condition is satisfied in all of the examples we shall study here.
This means that v−1

n BP∗(X) is a comodule over v−1
n BP∗(BP )/In, which

turns out to be much more manageable than BP∗(BP ) itself. There
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is a change-of-rings isomorphism (originally conceived by Morava and
proved in the form we’ll use in [MR77]) that enables us to replace
v−1
n BP∗(BP )/In with a smaller Hopf algebra Σ(n), which we now de-

scribe. Let

K(n)∗ =

{
Q for n = 0
Z/(p)[vn, v

−1
n ] for n > 0,

(this is the coefficient ring for Morava K-theory) and define a BP∗-
module structure on it by sending vm to zero for m 6= n . K(n)∗ for
n > 0 is a graded field in the sense that every graded module over it is
free. Then let

Σ(n) = K(n)∗ ⊗BP∗ BP∗(BP )⊗BP∗ K(n)∗,

where the tensor product on the right is with respect to theBP∗-module
structure on BP∗(BP ) induced by the right unit map ηR. Using more
precise information about ηR, we get the following explicit description
of Σ(n) as an algebra.

Σ(n) = K(n)∗[t1, t2, . . . ]/(vnt
pn

i − vp
i

n ti).

It is a Hopf algebra with coproduct inherited from that on BP∗(BP ).
For a BP∗(BP )-comodule M , K(n)∗⊗BP∗M is a comodule over Σ(n).

Now we can state the change-of-rings theorem of [MR77].

Theorem 2.10. Let M be a BP∗(BP )-comodule that is annihilated by
the ideal In. Then there is a natural isomorphism

ExtBP∗(BP )(BP∗, v
−1
n M) = ExtΣ(n)(K(n)∗, K(n)∗ ⊗BP∗ M).

The Ext group on the right is explicitly computable in many inter-
esting cases. It is related to the continuous mod p cohomology of the
strict automorphism group of the height n formal group law. This
connection was first perceived by Morava and is explained in [Rav86,
Chapter 6]. The methods given there lead to the following analog of
2.9.

Corollary 2.11. With BP∗(y(n)) as in (2.8),

ExtBP∗(BP )(BP∗, v
−1
n BP∗(y(n)))

= ExtΣ(n)/(t1,... ,tn)(K(n)∗, K(n)∗[vnt
pn

1 − vpnt1, . . . , vntp
n

n − vp
n

n tn])

= P (vn+1, . . . , v2n)⊗ ExtΣ(n)/(t1,... ,tn)(K(n)∗, K(n)∗)

= K(n)∗[vn+1, . . . , v2n]⊗ E(hn+i,j : 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1),

where hn+i,j ∈ Ext1,2pj(pn+i−1) corresponds to the primitive element

tp
j

n+i ∈ Σ(n)/(t1, . . . , tn).



THE TELESCOPE CONJECTURE 15

2.3. The localized Adams spectral sequence. The classical Adams

spectral sequence is useless for studying the telescope X̂ because its
homology is trivial. We need to replace it with the localized Adams
spectral sequence; the first published account of it is due to Miller
[Mil81]. It is derived from the Adams spectral sequence in the follow-

ing way. The telescope X̂ is obtained from X by iterating a vn-map
f : X → Σ−dX. Suppose there is a lifting

f̃ : X → Σ−dXs0

(where Xs0 is as in (2.1)) for some s0 ≥ 0. This will induce maps

f̃ : Xs → Σ−dXs+s0 for s ≥ 0. This enables us to define X̂s to be the
homotopy direct limit of

Xs Σ−dXs+s0 Σ−2dXs+2s0
· · ·w

f̃
w

f̃
w

f̃

Let Xs = X for s < 0. Thus we get the following diagram, similar
to that of (2.1).

· · · X̂−1 X̂0 X̂1
· · ·

K̂−1 K̂0 K̂1,

u

g−1

u

u

g0

u

u

g1

u u

(2.12)

where the spectra K̂s are defined after the fact as the obvious cofibers.
This leads to a full plane spectral sequence (the localized Adams spec-
tral sequence) with

Es,t
1 = πt−s(K̂s) and dr : Es,t

r → Es+r,t+r−1
r

as before. This spectral sequence converges to the homotopy of the ho-

motopy direct limit π∗(lim→ X̂−s) if the homotopy inverse limit lim← X̂s

is contractible.

Theorem 2.13 (Convergence of the localized Adams spectral sequence).

For a spectrum X equipped with maps f and f̃ as above, in the localized

Adams spectral sequence for π∗(X̂) we have

• The homotopy direct limit lim→ X̂−s is the telescope X̂.

• The homotopy inverse limit lim← X̂s is contractible if the original
(unlocalized) Adams spectral sequence has a vanishing line of slope
s0/d at Er for some finite r, i.e., if there are constants c and r
such that

Es,t
r = 0 for s > c+ (t− s)(s0/d).
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(In this case we say that f has a parallel lifting f̃ .)
• If f has a parallel lifting, this localized Adams spectral sequence

converges to π∗(X̂).

Proof. For the assertion about the homotopy direct limit, note that

X̂s = lim
→i

Σ−diXs+is0

so lim
→s

X̂s = lim
→s

lim
→i

Σ−diXs+is0

= lim
→i

lim
→s

Σ−diXs+is0

= lim
→i

Σ−diX

= X̂.

Next we will prove the assertion about the vanishing line. Let
Es,t
r (X) denote the Er-term of the Adams spectral sequence for X,

and Es,t
r (X̂) that of the localized Adams spectral sequence. Then f̃

induces homomorphisms

Es,t
r (X)

f̃−→ Es+s0,t
r (Σ−dX) = Es+s0,t+d

r (X)

and we have

Es,t
r (X̂) = lim

→k
Es+ks0,t+kd
r (X),

so the vanishing line of the localized Adams spectral sequence follows
from that of the unlocalized Adams spectral sequence.

Next we will show that lim←(X̂i) is contractible. Recall that

X̂i = lim
→k

Σ−kdXi+ks0

so

πm(X̂i) = lim
→k

πm+kd(Xi+ks0).

Now the vanishing line implies that the map g : Xs → Xs−r+1 sat-
isfies πm(g) = 0 for m < (sd + c)/s0. To see this, note that a perma-
nent cycle of filtration s corresponds to a coset (modulo the image of
π∗(Xs+1)) in π∗(Xs). It is dead in the Er-term if and only if its image
in π∗(Xs−r+1) is trivial.

It follows that for each k > 0 we have a diagram

Xs Xs−r+1

Σ−dkXs+s0k Σ−dkXs+s0k−r+1

w
g

u u

w
g
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in which both maps g vanish on πm for m < (sd + c)/s0. Hence the
map

X̂s
ĝ−→ X̂s−r+1

has the same property.
It follows that if we fix m and s, the homomorphism

πm(X̂i) −→ πm(X̂s)(2.14)

is trivial for sufficiently large i, and the image of

lim
←
π∗(X̂i) −→ π∗(X̂s)

is trivial for each s, so

lim
←
π∗(X̂i) = 0.

To complete the proof that lim←(X̂i) is contractible, we need to show
that

lim
←

1π∗(X̂i) = 0.

However, (2.14) implies that the inverse system of homotopy groups is
Mittag-Leffler, so lim1

← vanishes.
According to Boardman [Boa81, §10], the convergence of a whole

plane spectral sequence such as ours requires, in addition to the con-
tractibility just proved, the vanishing of a certain obstruction group
that he calls W . (It measures the failure of certain direct and inverse
limits to commute.) However, his Lemma 10.3 says that our vanishing
line implies that W = 0.

Here are some informative examples.

• If we start with the Adams-Novikov spectral sequence, then the
map f cannot be lifted since BP∗(f) is nontrivial. Thus we have
s0 = 0 and the lifting condition requires that X has a horizontal
vanishing line in its Adams-Novikov spectral sequence. This is not
known (or suspected) to occur for any nontrivial finite X, so we do
not get a convergence theorem about the localized Adams-Novikov
spectral sequence, which is merely the standard Adams-Novikov

spectral sequence applied to X̂.
• If we start with the classical Adams spectral sequence, theorem of

Hopkins-Palmieri-Smith says that a type n X (with n > 0) always
has a vanishing line of slope 1/|vn| = 1/(2pn− 2), in the Er term,
for some r. ([HPS98]) Thus we have convergence if f has a lifting
with s0 = d/|vn|. This does happen in the few cases where Toda’s
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complex V (n−1) exists. Then V (n−1) is a type n complex with
a vn-map with d = |vn| and s0 = 1.
• In favorable cases (such as Toda’s examples and y(n)) the E2-term

of the localized Adams spectral sequence can be identified as an
Ext groups which can be computed explicitly.

We will discuss the last example in more detail. For simplicity we
assume until further notice that p is odd. Recall from §2.1 that

ExtA∗(Z/(p), H∗(y(n))) = ExtB(n)∗(Z/(p),Z/(p))

and that the latter can be computed using Cartan-Eilenberg spectral
sequence (2.32) for the extension (2.6) with

E2 = ExtP ′∗(Z/(p), V
′).

The effect of localization is to invert vn as in (2.35). The comodule
structure on V ′ is given by

ψ(v2n+i) = 1⊗ v2n+i +
∑

0≤k<i

ξp
n+k

n+i−k ⊗ vn+k

= 1⊗ v2n+i + ξp
n

n+i ⊗ vn + . . . .

In the ring v−1
n V ′, define w2n+i for i > 0 recursively by

w2n+i = v−1
n

(
v2n+i −

∑
0<k<i

vn+kw
pk

2n+i−k

)
,(2.15)

and let

W ′ = P (vn, vn+1, ..., v2n, w2n+1, w2n+2, . . . ) ⊂ v−1
n V ′.(2.16)

(2.15) can be rewritten as

v2n+i =
∑

0≤k<i−n

vn+kw
pk

2n+i−k.(2.17)

We will show below (see (5.7)) that for w2n+i as in (2.15),

ψ(w2n+i) = 1⊗ w2n+i − ξ
pn

n+i ⊗ 1 +
∑
n<k<i

ξ
pn

k ⊗ w
pk

2n+i−k.(2.18)

Then using (2.28) we have

d(w2n+i) = −ξp
n

n+i ⊗ 1 +
∑
n<k<i

ξ
pn

k ⊗ w
pk

2n+i−k.
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in the cobar complex CP ′∗(W
′). Hence the expression on the right is a

cocycle, so the same is true of its pj−nth power in the algebra P ′∗⊗W ′,
(for j < n, not j ≥ n, as one might expect,)

hn+i,j = −ξp
j

n+i ⊗ 1 +
∑
n<k<i

ξ
pj

k ⊗ w
pj+k−n

2n+i−k,(2.19)

and we denote the element in Ext represented by its transpotent by
bn+i,j.

It follows that W ′ (2.16) and therefore v−1
n V ′ are free comodules over

P (ξp
n

n+1, ξ
pn

n+2, . . . ).

Using the localized change-of-rings isomorphism of (2.33), we get

v−1
n ExtP ′∗(Z/(p), V

′)

= ExtP ′∗(Z/(p), v
−1
n V ′)

= ExtP ′∗(Z/(p), v
−1
n W ′)

= v−1
n ExtP ′∗(Z/(p),W

′)

= v−1
n P (vn, . . . , v2n)⊗ Ext

P ′∗/(ξ
pn

n+i)
(Z/(p),Z/(p)).

The Ext group above is easy to compute because the coproduct in
P ′∗/(ξ

pn

n+i) is trivial, i.e., each generator is primitive. Thus we have

v−1
n ExtP ′∗(Z/(p), V

′)

= v−1
n P (vn, . . . , v2n)⊗


E(hn+i,j : i > 0, 0 ≤ j < n)
⊗P (bn+i,j : i > 0, 0 ≤ j < n)

for p odd
P (hn+i,j : i > 0, 0 ≤ j < n)

for p = 2.

(2.20)

Since the elements vn+i for 0 ≤ i ≤ n are permanent cycles, the
Cartan-Eilenberg spectral sequence collapses. There are no multiplica-
tive extensions since E∞ has no zero divisors. Hence the above is a
description of the E2-term of the localized Adams spectral sequence
for Y (n).

2.4. The Thomified Eilenberg-Moore spectral sequence. We
will use a Thomified form of the Eilenberg-Moore spectral sequence
which is introduced in [MRS].

Let

X
i−→ E

h−→ B(2.21)
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be a fiber sequence with simply connected base space B, and suppose
that we also have a p-local stable spherical fibration ξ over E which is
oriented with respect to mod p homology.

Let Y , and K be the Thomifications of X and E. In [MRS] we
construct a diagram

Y Y0 Y1 Y2 · · ·

K0 K1 K2

u

g0

u

g1

u

u

g2

u u

(2.22)

where Ys+1 is the fiber of gs and

H∗(Ks) = Σ−sH∗(K)⊗H∗(B(s)),

for s > 0. This is similar to the Adams diagram of (2.1), but H∗(gs)
need not be a monomorphism in general. As before the associated
exact couple of homotopy groups leads to a spectral sequence, which
we will call the Thomified Eilenberg-Moore spectral sequence.

To identify the E2-term in certain cases, note that H∗(K) is simul-
taneously a comodule over A∗ and (via the Thom isomorphism and
the map h∗) H∗(B), which is itself a comodule over A∗. Following
Massey-Peterson [MP67], we combine these two structures by defining
the semitensor product coalgebra

R∗ = H∗(B)⊗ A∗(2.23)
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in which the coproduct is the composite

H∗(B)⊗ A∗

H∗(B)⊗H∗(B)⊗ A∗ ⊗ A∗

H∗(B)⊗ A∗ ⊗H∗(B)⊗ A∗ ⊗ A∗

H∗(B)⊗ A∗ ⊗ A∗ ⊗H∗(B)⊗ A∗

(H∗(B)⊗ A∗)⊗ (H∗(B)⊗ A∗),

u

∆B⊗∆A

u

H∗(B)⊗ψB⊗A∗⊗A∗

u

H∗(B)⊗A∗⊗T⊗A∗

u

H∗(B)⊗mA⊗H∗(B)⊗A∗

(2.24)

where ∆A and ∆B are the coproducts on A∗ and H∗(B), T is the
switching map, ψB : H∗(B) → A∗ ⊗ H∗(B) is the comodule structure
map, and mA is the multiplication in A∗.

Massey-Peterson gave this definition in cohomological terms. They
denoted the semitensor algebra R by H∗(B) � A, which is additively
isomorphic to H∗(B)⊗ A with multiplication given by

(x1 ⊗ a1)(x2 ⊗ a2) = x1a
′
1(x2)⊗ a′′1a2,

where xi ∈ H∗(B), ai ∈ A, and a′1⊗a′′1 denotes the coproduct expansion
of a1 given by the Cartan formula. Our definition is the homological
reformulation of theirs.

Note that given a map f : V → B and a subspace U ⊂ V , H̄∗(V/U) =
H∗(V, U) is an R-module since it is an H∗(V )-module via relative cup
products, even if the map f does not extend to the quotient V/U . In
our case we have maps Gs → B for all s ≥ 0 given by

(e, b1, . . . , bs) 7→ he,

induced form the standard form of the Eilenberg-Moore spectral se-
quence, as in [MRS]. These are compatible with all of the maps ht,
so H∗(Ys) and H∗(Ks) are R∗-comodules, and the maps between them
respect this structure.

We will see in the next theorem that under suitable hypotheses,
the E2-term of the Thomified Eilenberg-Moore spectral sequence is
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ExtR∗(Z/(p), H∗(K)) when B is an H-space. When B is an H-space we
have a Hopf algebra extension (2.31)

A∗ −→ R∗ −→ H∗(B).

This gives us a Cartan-Eilenberg spectral sequence (2.32) converging
to this Ext group with

E2 = ExtA∗(Z/(p),ExtH∗(B)(Z/(p), H∗(K))).(2.25)

Note that the inner Ext group above is the same as ExtH∗(B)(Z/(p), H∗(E)),
the E2-term of the classical Eilenberg-Moore spectral sequence con-
verging to H∗(X). If the latter collapses from E2 (which it does in the
examples we will study), then the Ext group of (2.25) can be thought
of as

ExtA∗(Z/(p), H∗(Y )),

where H∗(Y ) is equipped with the Eilenberg-Moore bigrading. This
is the usual Adams E2-term for Y when H∗(Y ) is concentrated in
Eilenberg-Moore degree 0, but not in general.

Theorem 2.26. (i) Suppose that H∗(K) is a free A-module and B
is simply connected. Then the Thomified Eilenberg-Moore spec-
tral sequence associated with the homotopy of (2.22) converges to
π∗(Y ) with

E2 = ExtR∗(Z/(p), H∗(K)),

where R∗ is the Massey-Peterson coalgebra of (2.23).
(ii) If in addition the map i : X → E induces a monomorphism in mod

p homology, then the Thomified Eilenberg-Moore spectral sequence
coincides with the classical Adams spectral sequence for Y .

This is proved in [MRS]. Now we give a corollary that indicates that
the hypotheses are not as restrictive as they may appear.

Corollary 2.27. Given a fibration

X −→ E −→ B

with X p-adically complete, a p-local spherical fibration over E, and
B simply connected, there is a spectral sequence converging to π∗(Y )
(where Y is the Thomification of X) with

E2 = ExtH∗(B)⊗A∗(Z/(p), H∗(K)),

where K as usual is the Thomification of E.
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Proof. We can apply 2.26 to the product of the given fibration with
pt.→ Ω2S3 → Ω2S3, where Ω2S3 is equipped with the p-local spherical
fibration of Lemma 3.3 below. Then the Thomified total space is K ∧
H/p, so its cohomology is a free A-module. Thus the E2-term is

ExtH∗(B∧H/p)⊗A∗(Z/(p), H∗(K ∧H/p)) = ExtH∗(B)⊗A∗(Z/(p), H∗(K)).

2.5. Hopf algebras and localized Ext groups. In this subsection
we will collect some results about Ext groups over Hopf algebras and
their localizations. We refer the reader to [Rav86, A1.3] for details of
the unlocalized theory.

Given a connected graded cocommutative Hopf algebra Γ over a field
k (always Z/(p) in this paper) and a left Γ-comodule M , there is a cobar
complex CΓ(M) whose cohomology is ExtΓ(k,M); see [Rav86, A1.2.11]
where it is denoted by CΓ(k,M). Additively we have

Cs
Γ(M) = Γ⊗s ⊗M.

The coboundary on C0
Γ(M) = M is given by

d(m) = ψ(m)− 1⊗m(2.28)

where ψ : M → Γ ⊗M is the comodule structure map. When M is a
comodule algebra, CΓ(M) is a differential graded algebra. The product
is somewhat complicated and is given in [Rav86, A1.2.15]. For future
reference we record the formula for

C1
Γ(M)⊗ C1

Γ(M)
∪−→ C2

Γ(M),

namely

(γ1 ⊗m1) ∪ (γ2 ⊗m2) = ±γ1 ⊗m′1γ2 ⊗m′′1m2,(2.29)

where m′1 ⊗m′′1 denotes the comodule expansion of m1.
Given a Hopf algebra map f : Γ → Φ and a left Φ-comodule M ,

there is a spectral sequence converging to ExtΦ(k,M) with

Ei,j
2 = ExtΓ(k,ExtΦ(k,Γ⊗M)) and dr : Es,t

r → Es+r,t−r+1
r .(2.29)

It is derived from the double complex CΓ(CΦ(Γ ⊗M)) by filtering by
the first degree. More explicitly we have

Ci
Γ(Cj

Φ(Γ⊗M)) = Γ⊗i ⊗ Φ⊗j ⊗ Γ⊗M
The jth row is CΓ(Φ⊗j ⊗ Γ⊗M), which is acyclic since the comodule
Φ⊗j ⊗ Γ ⊗M is free over Γ. This means that filtering by the second
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degree and computing the cohomology of each row first gives us CΦ(M)
in the 0th column. This shows that the total complex is chain homotopy
equivalent to CΦ(M) and its cohomology is ExtΦ(k,M).

On the other hand, the ith column is

Γ⊗i ⊗ CΦ(Γ⊗M)

so its cohomology is

Γ⊗i ⊗ ExtΦ(k,Γ⊗M)

giving

Ei,j
1 = Ci

Γ(ExtjΦ(k,Γ⊗M))

and

Ei,j
2 = ExtiΓ(k,ExtjΦ(k,Γ⊗M))

as claimed.
There are two interesting cases of this spectral sequence, occurring

when f is surjective and when it is injective. When it is surjective the
inner Ext group is Γ2ΦM concentrated in degree 0 since Γ is a free
Φ-comodule. Hence the spectral sequence collapses and we have

ExtΦ(k,M) = ExtΓ(k,Γ2ΦM).(2.30)

This is the change-of-rings isomorphism due originally to Milnor-Moore
[MM65].

The other interesting case of the spectral sequence occurs when we
have an extension of Hopf algebras

Γ
f−→ Φ

g−→ Λ;(2.31)

this means that Φ = Γ ⊗ Λ both as Γ-modules and as Λ-comodules.
Applying (2.30) to the surjection g gives

ExtΦ(k,Γ⊗M) = ExtΦ(k,Σ2ΛM) = ExtΛ(k,M)

so the E2-term of the spectral sequence associated with f is

Ei,j
2 = ExtiΓ(k,ExtjΛ(k,M)).(2.32)

This is the Cartan-Eilenberg spectral sequence of [CE56, page 349].
Now we will discuss localized Ext groups. Suppose a Hopf algebra

Γ has an odd dimensional (this is not needed if k has characteristic
2) primitive element t. Then there is a corresponding element v ∈
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Ext1
Γ(k, k) which we would like to invert. The class v is represented by

a short exact sequence

0 −→ k −→ L −→ Σ|t|k −→ 0

of Γ-comodules. Now suppose we have an injective Γ-resolution (such
as the one associated with the cobar complex or the double complex
above) of a left Γ-comodule M ,

0 M I0 I1 · · ·w w w
d0

w
d1

and let Js = ker ds = cokerds−1. Then for each s ≥ 0 we have a diagram

0 Js L⊗ Js Σ|t|Js 0

0 Js Is Js+1 0

w w w

u

w

u

w w w w

Using this we get a diagram

M Σ−|t|J1 Σ−2|t|J2 · · ·

I0 Σ−|t|I1 Σ−2|t|I2
· · · ,

w

u

w

u

w

u

w w w

(where the maps in the bottom row exist because their targets are in-
jective and the vertical maps are inclusions) and hence a direct limit of
injective resolutions, of the corresponding cochain complexes obtained
by cotensoring over Γ with k, and of Ext groups. We denote the direct
limit of cobar complexes by v−1CΓ(M) (the localized cobar complex )
and its cohomology by v−1ExtΓ(M), the localized Ext group.

Now suppose we have a map f : Γ→ Φ as before with an odd dimen-
sional primitive t ∈ Γ corresponding to v ∈ Ext1

Γ(k,M). We can replace
the double complex CΓ(CΦ(Γ⊗M)) by v−1CΓ(CΦ(Γ⊗M)). The equiv-
alence between CΓ(CΦ(Γ⊗M)) and CΦ(M) is preserved by inverting v
in this way, so we get a spectral sequence converging to v−1ExtΦ(k,M).
The ith column of the double complex is v−1Ci

Γ(CΣ(Γ ⊗M)), and we
get

Ei,j
2 = v−1ExtiΓ(k,ExtjΦ(k,M)).
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When f is onto, the inner Ext group collapses as before and we get a
localized change-of-rings isomorphism

v−1ExtΦ(k,M) = v−1ExtΓ(k,Γ2ΦM),(2.33)

and when f is the injection in a Hopf algebra extension as in (2.31) we
get the first form of the localized Cartan-Eilenberg spectral sequence

v−1ExtΓ(k,ExtΛ(k,M)) =⇒ v−1ExtΦ(k,M).(2.34)

We can also consider the case where the odd dimensional primitive t
is in Φ but not in Γ. Then we replace the double complex CΓ(CΦ(Γ⊗
M)) by CΓ(v−1CΦ(Γ ⊗ M)). Then again we have acyclic rows and
taking their cohomology gives v−1CΦ(M) in the 0th column. Thus our
spectral sequence converges again to v−1ExtΦ(k,M) with

Ei,j
2 = ExtiΓ(k, v−1ExtjΦ(k,M)).

In the case of an extension we use (2.33) to identify the inner Ext
group, and we get the second form of the localized Cartan-Eilenberg
spectral sequence

ExtΓ(k, v−1ExtΛ(k,M)) =⇒ v−1ExtΦ(k,M).(2.35)

3. The spectra y(n) and Y (n)

We will now construct the spectrum y(n) whose homology and E2-
terms were discussed previously, along with the associated telescope
Y (n).

3.1. The EHP sequence and some Thom spectra. Recall that
ΩS3 is homotopy equivalent to a CW-complex with a single cell in every
even dimension. Let JmS

2 (the mth James product of S2) denote its
2m-skeleton. James [Jam55] showed that there is a splitting

ΣΩS3 '
∨
i>0

S2i+1.

These lead to the James-Hopf maps Hi : ΩS3 → ΩS2i+1 which are
surjective in homology. We will denote Hp simply by H. When i is a
power of a prime p, the p-local fiber of this map is a skeleton, i.e., there
is a p-local fiber sequence

Jpn−1S
2 −→ ΩS3 −→ ΩS2pn+1.(3.1)
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Definition 3.2. y(n) is the Thom spectrum of the p-local spherical fi-
bration over ΩJpn−1S2 induced from the one over Ω2S3 given by Lemma
3.3 below.

y(n) is an A∞ ring spectrum, since it is the Thom spectrum of a
bundle induced by a loop map ([Mah79].) It may be that in the cases
where Toda’s complex V (n−1) exists and p is odd, that y(n) ' V (n−
1) ∧ T (n) (but probably not as A∞ ring spectra), where T (n) is the
spectrum of [Rav86, §6.5] with

BP∗(T (n)) = BP∗[t1, t2, . . . , tn].

It is a p-local summand of the Thom spectrum of the canonical complex
bundle over ΩSU(pn).

The following is proved in [MRS].

Lemma 3.3. For each prime p there is a p-local spherical fibration
over Ω2S3 whose Thom spectrum is the mod p Eilenberg-Mac Lane spec-
trum H/p.

For the rest of this section we assume the p is odd to avoid notational
complications. We have

H∗(y(n)) = E(τ0, τ1, · · · τn−1)⊗ P (ξ1, · · · ξn)

as comodules over A∗, as can be inferred from [Mah79].

Lemma 3.4. y(n) is a split ring spectrum, i.e., y(n)∧ y(n) is a wedge
of suspensions of y(n) with one summand for each basis element of
H∗(y(n)). In particular

y(n)∗(y(n)) = π∗(y(n))⊗H∗(y(n)).

Proof. Consider the Atiyah-Hirzebruch spectral sequence for y(n)∗(y(n))
with

E2 = H∗(y(n);π∗(y(n))).

It suffices to show that each multiplicative generator of H∗(y(n)) is a
permanent cycle. These generators all have dimensions no more than
|vn|, and below that dimension y(n) is equivalent toH/p. It follows that
there are no differentials in the Atiyah-Hirzebruch spectral sequence in
that range.

The classical Adams E2-term for y(n) was described in Corollary 2.3.
In low dimensions there is no room for any differentials, and we have

Lemma 3.5. Below dimension 2p2n+1− 2pn−1− 2, the Adams spectral
sequence for π∗(y(n)) collapses from E2 (for formal reasons), with

E2 = P (vn, · · · , v2n)⊗ E(hn+i,j : i > 0, j ≥ 0)⊗ P (bn+i,j : i > 0, j ≥ 0),
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where

vn+i ∈ E1,2pn+i−1
2

hn+i,j ∈ E1,2pn+i+j−2pj

2

bn+i,j ∈ E2,2pn+i+j+1−2pj+1

2 .

Proof. From the Hopf algebra extension

H∗(y(n)) −→ A∗ −→ B(n)∗

we see that ExtB(n)∗(Z/(p),Z/(p)) = ExtA∗(Z/(p), H∗y(n)) (our E2-
term) is a comodule over H∗(y(n)), regarded as a subalgebra of A∗.
From 3.4 we see that this subalgebra of A∗ is part of the coalgebra of co-
operations in y(n)∗-theory. This means that the corresponding quotient
of A acts on the Adams spectral sequence. Routine calculations give

β(vn+i) = hn+i,0,

P pj(hn+i,j) = hn+i−1,j+1

and P pj+1

(bn+i,j) = bn+i−1,j+1.

Hence if we can show that vn+i for i ≤ n and bn+i,0 for i ≤ n − 1 are
permanent cycles, then the same will be true of all generators in our
range of dimensions. We will show this by proving that there are no
elements (besides hn+i,0) in dimension |vn+i| − 1 or |bb+i,0| − 1 for these
i.

This can be done by organizing the information in a suitable way.
We define the weight ||x|| of an element x by

||vn+i|| = pi,

||hn+i,j|| = pi+j,

||bn+i,j|| = pi+j+1

and ||xy|| = ||x||+ ||y||.
The generator x having the lowest dimension for its weight is vn if ||x|| = 1,

hn+1,0 if ||x|| = p and
bn+1,j if ||x|| = pj+2 for j ≥ 0.

and the one with the highest weight is always vn+i.
Next observe that for i ≤ n,

(pi + 1)|bn+1,j| > |vn+i+j+2|
and (pi − 1)|vn+k| < |bn+1,i+k−2|.

This means that in our range the target of a differential on a generator
x must have the same weight as x.
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In general, Adams spectral sequence differentials need not preserve
this weight function. However, the first possible exceptions to this
occur just outside our range, namely it is possible that

d1(v2n+1) = vnhn+1,n

and d2pj(h2n+1−j,j) = vnb
pj

n+1,n−1−j for 0 ≤ j ≤ n− 1.

(3.6)

We will see below (5.18) that these differentials actually occur, the first
being apparent from the structure of B(n)∗.

Now consider the quantity

µ(x) = |x| − 2pn||x||,

which satisfies µ(xy) = µ(x) + µ(y). Then we have

µ(vn+i) = −2,

µ(hn+i,j) = −1− 2pj

and µ(bn+i,j−1) = −2− 2pj.

From this we can see that for any monomial x of weight pi, µ(vn+i)
exceeds 1 + µ(x) except when x = hn+i,0, and µ(bn+i−1,0) exceeds it
except when x is one of the three generators with a higher value of µ,
namely vn+i, hn+i,0 and hn+i−1,1.

We know that dr(vn+i) must have weight pi and that µ(dr(vn+i)) =
µ(vn+i)−1, so there is no possible nontrivial value of dr(vn+i). Similarly
there can be no differential on bn+i−1,0.

The first positive dimensional element in π∗(y(n)) is vn ∈ π2pn−2(y(n)).
We can use the multiplication on y(n) to extend vn to a self-map. The
telescope Y (n) is the homotopy colimit of

y(n)
vn−→ Σ−|vn|y(n)

vn−→ Σ−2|vn|y(n)
vn−→ · · ·(3.7)

Theorem 3.8. The telescope Y (n) defined above is Lfny(n).

Proof. We will adapt the methods used by Hopkins-Smith [HS98] to
prove the periodicity theorem, as explained in [Rav92a, Chapter 6]. Let
X by a finite complex of type n with a vn-map f such that K(n)∗(f)
is multiplication by vkn; see [Rav92a, 6.1.1]. Let R = DX ∧ X, which
is a finite ring spectrum. We will compute in π∗(R ∧ y(n)), which is
a noncommutative Z/(p)-algebra. Let F ∈ π∗(R ∧ y(n)) denote the
image of f under map R→ R∧ y(n), and let G be the image of g = vkn
under the map y(n)→ R ∧ y(n).
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Now R∧ y(n) has an Adams vanishing line of slope 1/|vn| since y(n)
does. The map F−G represents an element above the line of this slope
through the origin, so it is nilpotent. (In the proof of the periodicity
theorem, the nilpotence theorem was needed at this point. We do not
need an analog of it here because we have the vanishing line.) The
methods of [Rav92a, 6.1.2] can be applied here to show that for some

i > 0, F pi and Gpi commute. Now replace F and G by their commuting
powers. F −G is still nilpotent for the same reason as before, and for
j � 0 we have

0 = (F −G)p
j

= F pj −Gpj .

Thus F pj = Gpj . Replacing the original f and g by suitable powers
we get a commutative diagram (ignoring suspensions)

X ∧ y(n) X ∧ y(n)

X ∧ y(n) X ∧ y(n).

w

f∧y(n)

u

X∧g

u

X∧g

w

f∧y(n)

It follows that

X̂ ∧ y(n) = X ∧ Y (n) = X̂ ∧ Y (n).

Thus the map y(n) → Y (n) is an X̂∗-equivalence. The result will

follow if we can show that Y (n) is X̂∗-local. We have Y (n) ∧ Cf = 0,
Cf being the cofiber of f and therefore a finite complex of type n+ 1.
Given this, is follows from the thick subcategory theorem that Y (n)

annihilates all finite K(n)∗-acyclic complexes, so it is X̂∗-local.

Conjecture 3.9. Y (n) has the same Bousfield class as the telescope
associated with a finite complex of type n.

This could be regarded as a new formulation of the telescope con-
jecture, with Y (n) taking the place of K(n). See also Conjecture 4.4
below. A stronger conjecture is the following.

Conjecture 3.10. Y (n) has the same homotopy type as an infinite
wedge of finite type n telescopes.

3.2. The homotopy of Lny(n) and Y (n). We have

BP∗(Lny(n)) = v−1
n BP∗(y(n)) = v−1

n BP∗/In[t1, . . . , tn].

and we know that the Adams-Novikov spectral sequence converges to
π∗(Lny(n)). Its E2-term was given above in 2.11, namely

E2 = K(n)∗[vn+1, . . . , v2n]⊗ E(hn+i,j : 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1).
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It follows from 3.5 that each vn+i is a permanent cycle, as is hn+i,j

for i + j ≤ n. This accounts for just over half of the n2 exterior
generators. Perhaps other exterior generators are permanent cycles for
dimensional reasons, but we will see below that similar elements in the
localized Adams spectral sequence are not.

Question 3.11. Does the Adams-Novikov spectral sequence for Lny(n)
collapse?

It does for sparseness reasons when 2p > n2. In any case we have
the following result.

Corollary 3.12. π∗(Lny(n)) is finitely presented as a module over the
ring

R(n)∗ = K(n)∗[vn+1, . . . , v2n].(3.13)

We had hoped to show this is not true of π∗(Y (n)) for n > 1, showing
that Y (n) (which is Lfny(n)) differs from Lny(n), thereby disproving the
telescope conjecture.

We can compute π∗(Y (n)) with the localized Adams spectral se-
quence. Its E2-term was identified in (2.20) as

E2 = R(n)∗ ⊗ E(hn+i,j : i > 0, 0 ≤ j ≤ n− 1)

= ⊗P (bn+i,j : i > 0, 0 ≤ j ≤ n− 1).

As remarked above, the hn+i,j for i+j ≤ n and the vn+i are permanent
cycles.

Conjecture 3.14. For i > 0 and 0 ≤ j ≤ n− 1, the element h2n+i−j,j
survives to E2pj and supports a nontrivial differential

d2pj(h2n+i−j,j) = vnb
pj

n+i,n−1−j.

Each bn+i,j for i > 0 and 0 ≤ j ≤ n− 2 survives to E1+2pn−1.

Note that if in addition each bn+i,j were a permanent cycle, then we
would have

E∞ = R(n)∗ ⊗ E(hn+i,j : i+ j ≤ n)⊗ P (bn+i,j)/(b
pn−1−j

n+i,j ).(3.15)

For n > 1, this E∞ and hence π∗(Y (n)) would be infinitely generated
as a module over R(n)∗, which is incompatible with the telescope con-
jecture. However we cannot prove that each bn+i,j is a permanent cycle
for n > 1, and it seems unlikely to be true. Hence we expect E∞ to be
more complicated than indicated by (3.15).

We have
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Conjecture 3.16 (Differentials conjecture). In the localized Adams spec-
tral sequence for Y (n) the elements hn+i,0 and hn+i,1 survive to E2 and
E2p respectively, and there are differentials

d2(h2n+i,0 + s2n+i,0) = vnbn+i,n−1

and d2p(h2n+i−1,1 + s2n+i−1,1) = vnb
p
n+i,n−2

for decomposables s2n+i−j,j. The elements bn+i,j for j < n − 1 survive
to E2p+1, so

E2p+1 = R(n)∗ ⊗ E(hn+i,0 : 1 ≤ i ≤ n)⊗ E(hn+i,1 : 0 ≤ i ≤ n− 1)

⊗E(hn+i,j : i > 0, 2 ≤ j ≤ n− 1)

⊗P (bn+i,n−2 : i > 0)/(bpn+i,n−2)

⊗P (bn+i,j : i > 0, 0 ≤ j ≤ n− 3).

This will be discussed in §5. The strategy is to lift the computa-
tion back to a localized Thomified Eilenberg-Moore spectral sequence
converging to Y (n)∗(Ω

3S1+2pn) in a manner to be described in §3.3,
specifically using the map of (3.18) below. Curiously, its E2-term is
essentially the one above tensored with itself. The corresponding state-
ment about differentials there is Conjecture 5.15.

The advantage of this lifting is that the localized Thomified Eilenberg-
Moore spectral sequence has far more structure than the localized
Adams spectral sequence above, due in large part to the structure of
the space Ω3S1+2pn . Its properties are developed in §4. It is an H-
space (which makes the spectral sequence one of Hopf algebras) with
a Snaith splitting described in §4.1. The pth Hopf map induces an
endomorphism of the spectral sequence that is described in Lemma
5.16.

For n = 1 Conjecture 3.16 gives the following.

E2 = R(1)∗ ⊗ E(h2,0, h3,0, . . . )⊗ P (b2,0, b3,0, . . . )

with differentials

d2(hi+1,0) = v1bi,0 for i ≥ 2,

which leaves

E3 = E∞ = R(1)∗ ⊗ E(h2,0).

Thus for n = 1, the localized Adams spectral sequence and the Adams-
Novikov spectral sequence give the same answer. Miller [Mil81] proved
the telescope conjecture for n = 1 and p odd by doing a similar calcu-
lation with y(1) replaced by V (0).

For n = 2 we have

E2 = R(2)∗ ⊗ E(h3,0, h3,1, h4,0, h4,1, . . . )⊗ P (b3,0, b3,1, b4,0, b4,1, . . . ).
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The first differential,

d2(hi+2,0) = v2bi,1 for i ≥ 3

gives

E3 = R(2)∗ ⊗ E(h3,0, h4,0)⊗ E(h3,1, h4,1, . . . )⊗ P (b3,0, b4,0, . . . ).

A pattern of higher differentials consistent with the telescope conjecture
would be

d1+pi+1(hi+2,1) = vp
i+1

2 bi,0 for i ≥ 3.

Notice that these get arbitrarily long for large i, and they are preempted
by the differentials of 3.16,

d2p(hi+1,1) = v2b
p
i,0.

The splitting of Lemma 3.4 has implications for the spectral se-
quences we are studying. For any space or spectrum X, y(n)∗(X)
is a left comodule over

y(n)∗(y(n)) = H∗(y(n))⊗ y(n)∗.

The same goes for Er of a spectral sequence converging to y(n)∗(X),
in which case y(n)∗(X) may be filtered in a way compatible with this
comodule structure. Similarly Y (n)∗(X) is a left comodule over

Y (n)∗(Y (n)) = H∗(y(n))⊗ Y (n)∗,

so that any spectral sequence converging to Y (n)∗ has a comodule
structure over Y (n)∗Y (n).

Lemma 3.17. The comodule structure of the localized E2-term of (2.20)
is given by

ψ(vn+i) =
∑

0≤k≤i

ξp
n+k

i−k ⊗ vn+k,

ψ(hn+i,j) =
∑

0≤k≤n−1−j

ξ
pj

k ⊗ hn+i−k,j+k

and ψ(bn+i,j) =
∑

0≤k≤n−1−j

ξ
pj+1

k ⊗ bn+i−k,j+k.

Further, in the localized Adams spectral sequence for Y (n), if x is any
of the hn+i,j or bn+i,j and d2(x) is nontrivial, it cannot be divisible by
vn+k for any k > 0.

Proof. The coalgebra structure in H∗(y(n)) can be read off by injecting
it into the dual Steenrod algebra. The values of ψ(vn+i) and ψ(hn+i,j)
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can be read off from the coproducts on τn+i and ξ
pj

n+i in A∗, and ψ(bn+i,j)
is the transpotent of the latter.

The divisibility of d2(x) by vn+k would contradict this comodule
structure.

3.3. The triple loop space. Now we will explain why the triple loop
space Ω3S1+2pn is relevant to the proof of the differentials conjecture.
Consider the following diagram in which each row is a fiber sequence.

ΩJpn−1S
2 × Ω3S1+2pn

Ω2S3 Ω2S1+2pn × Ω2S1+2pn

ΩJpn−1S
2

Ω2S3 Ω2S1+2pn

w

u

w

u

w
i

w

(3.18)

Here the top row is the Cartesian product of the bottom row with
the path fibration on Ω2S1+2pn . The right vertical map is loop space
multiplication, while the left one is the product of the identity map on
the first factor with the inclusion of the fiber of i on the second factor.

We will look at the Thomified Eilenberg-Moore spectral sequence for
each row where the spherical fibration over Ω2S3 is the one given by
3.3. Then the bottom row satisfies the hypotheses of Theorem 2.26(ii),
so we get the Adams spectral sequence for y(n).

For the top row, the E2-term is described by the following special-
ization of 2.26.

Theorem 3.19. Consider the Thomified Eilenberg-Moore spectral se-
quence associated with E = Ω2S3, equipped with the spherical fibration
given by 3.3. Suppose the defining fibration has the form

X E B

X1 × ΩB2 Ω2S3 × pt. B1 ×B2

w
i

w
h

w
i1×i2

w
h1×∗

where h is an H-map and H∗(i1) is monomorphic, and Y = Y1∧ΩB2+.
Then H∗(Y1) is a subalgebra of A∗ = H∗(K), and we let

Γ = A∗ ⊗H∗(Y1) Z/(p)
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Then the E2-term of the Thomified Eilenberg-Moore spectral sequence
is

ExtH∗(B2)⊗Γ(Z/(p),Z/(p)),

where H∗(B2)⊗ Γ is a semitensor product coalgebra with coproduct as
in (2.23).

In the next section we will see that the top row of (3.18) satisfies the
hypotheses of 3.19. In this case the Hopf algebra Γ is B(n)∗ of (2.2).

Proof. We have a Hopf algebra extension

H∗(B2)⊗ A∗ −→ H∗(B1)⊗H∗(B2)⊗ A∗ −→ H∗(B1)

and hence a Cartan-Eilenberg spectral sequence converging to the E2

of the Thomified Eilenberg-Moore spectral sequence with

E2 = ExtH∗(B2)⊗A∗(Z/(p),ExtH∗(B1)(Z/(p), H∗(K))).

In our case H∗(K) is a free comodule over H∗(B1), so the prespectral
sequence collapses to

ExtH∗(B2)⊗A∗(Z/(p), H∗(Y1)).(3.20)

Using the Hopf algebra extension

H∗(B2)⊗ Γ −→ H∗(B2)⊗ A∗ −→ H∗(Y1)

we can equate (3.20) with

ExtH∗(B2)⊗Γ(Z/(p),Z/(p)).

as claimed.

Theorem 3.21. The Thomified Eilenberg-Moore spectral sequence for
the top row of (3.18) can be localized in the same way that the one for
the bottom row can.

Proof. The spectral sequence in question is based on the diagram (2.22)

with Y0 = y(n) ∧ Ω3S1+2pn

+ . This diagram has suitable multiplicative
properties. In order to get a localized resolution as in (2.12), we need

to lift the map vn ∧ Ω3S1+2pn

+ to Y1. This lifting exists if and only if

g0(vn ∧ Ω3S1+2pn

+ ) is null, which it is since K0 = H/p and H∗(vn) = 0.
Thus the Thomified Eilenberg-Moore spectral sequence for the top

row of (3.18) can be localized compatibly with our localization of the
Adams spectral sequence associated with the bottom row. Convergence
of the localization of the top row (which is not actually needed for our
purposes) can be proved using the argument of Theorem 2.13 provided
we have a suitable vanishing line. Our E2-term is a subquotient of

ExtB(n)∗(Z/(p),ExtH∗(Ω2S1+2pn )(Z/(p),Z/(p))).
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The connectivities of B(n)∗ and Ω2S1+2pn imply that both factors have
a vanishing line of slope 1/|vn| as required.

4. Properties of Ω3S1+2pn

4.1. The Snaith splitting. For each n > 0 we have a fibration of
spaces (3.1)

Jpn−1S
2 → ΩS3 → ΩS1+2pn

which leads to a stable map

Ω3S1+2pn

+
f−→ y(n).(4.1)

We know that Ω3S1+2pn

+ has a Snaith splitting [Sna74]

Ω3S1+2pn

+ '
∨
i≥0

Σ|vn|iTi.(4.2)

Here Ti is a certain finite complex (independent of n) with bottom cell
in dimension 0 and top cell in dimension 2i−2α(i), where α(i) denotes
the sum of the digits in the p-adic expansion of i. In particular T1 = S0.

Moreover there are pairings

Ti ∧ Tj → Ti+j.

Thus we get a ring spectrum

T∞ = lim
→
Ti.(4.3)

Using the map vn of (3.7) and the map f of (4.1), for each i ≥ 0 we
get a diagram

Σi|vn|Ti Σi|vn|Ti+1 · · · Σi|vn|T∞

y(n) Σ−|vn|y(n) · · · Y (n)

w

u

f

w

u

f

w

u

f̂

w
vn

w
vn

w

The map f on the left is vin on the bottom cell of its source. The
horizontal maps in the top row each multiply the bottom cell by vn,

so that each square in the diagram commutes. The map f̂ on the
right makes Y (n) a module spectrum over T∞. If 3.9 is true, then the
following seems likely.

Conjecture 4.4. The Bousfield class of T∞ is that of the p-local sphere
spectrum.
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T∞ is also the Thom spectrum of a bundle over Ω3
0S

3 obtained as
follows. From the EHP sequence we get a fiber sequence

Ω2S2p−1 −→ Ω3
0S

3 −→ Ω3S2p+1.

We get our bundle from one over Ω3S2p+1 obtained by extending the
map S2p−2 → BU corresponding to a generator of π2p−2(BU).

Equivalently, our bundle is the one obtained from the map

Ω3
0S

3 = Ω3
0SU(2) −→ Ω3

0SU = BU.

There is also a Hopf map

Ω3S1+2pn H−→ Ω3S1+2pn+1

(4.5)

which is surjective in ordinary homology. It induces a map from the
(pi)th Snaith summand of the source to the ith one of the target,

Tpi
H−→ Σ2(p−1)iTi,(4.6)

which has degree one on the top cell (in dimension 2pi − 2α(i)). We
will use this map to study Ω3S1+2pn and T∞ below.

Recall (4.3) that the spectrum T∞ is the homotopy direct limit of
the Snaith summands of a certain triple loop space. The analogous
spectrum obtained from the Snaith splitting of the double loop space
of an odd dimensional sphere is H/p, but T∞ is far more interesting.
It turns out that K(n)∗(T∞) bears a remarkable resemblance to the
supposed value of π∗(Y (n)). (Compare Conjecture 3.16 and Theorem
4.17 below.)

4.2. Ordinary homology. H∗(Ω
3S2dp+1) has long been known [CLM76]

as a module over the Steenrod algebra A, and is as follows.

Lemma 4.7.

H∗(Ω
3S2dp+1) =

 P (ui : i ≥ 0)⊗ P (xi,j : i > 0, j ≥ 0) for p = 2
P (ui : i ≥ 0)⊗ E(xi,j : i > 0, j ≥ 0)

⊗ P (yi,j : i > 0, j ≥ 0) for p > 2

where |ui| = 2(pi+1d − 1), |xi,j| = 2pj(pi+1d − 1) − 1 and |yi,j| =
2pj+1(pi+1d− 1)− 2.

For all primes this group can be identified with

ExtH∗(Ω2S1+2dp)(Z/(p),Z/(p)),

i.e., the Eilenberg-Moore spectral sequence in mod p homology for the
path fibration on Ω2S1+2dp collapses.



38 MARK MAHOWALD, DOUGLAS RAVENEL AND PAUL SHICK

For p = 2 the action of the Steenrod algebra A is given by

Sq2k

∗ (ui) =

 xi,0 if k = 0
u2
i−1 if k = 1
x2
i−k+1,k−2 otherwise

Sq2k

∗ (xi,j) =

 x2
i,j−1 if k = 0 and j > 0
xi−1,j+1 if k = j + 1
0 otherwise.

For p odd we have

β∗(ui) = xi,0

P pk

∗ (ui) =

{
−upi−1 if k = 0
0 otherwise

β∗(xi,j) = yi,j−1 for j > 0

P pk

∗ (xi,j) =

{
xi−1,j+1 if k = j
0 otherwise

β∗(yi,j) = 0

P pk

∗ (yi,j) =

 −y
p
i,j−1 if k = 0 and j > 0

yi−1,j+1 if k = j + 1
0 otherwise.

We will also need to know the action of the Milnor primitives Qk,
which can be read off from Lemma 4.7. Up to sign we have

Qk(ui) =

{
xi−k,k if k < i
0 otherwise

Qk(xi,j) =


yp

k

i,j−k−1 for 0 ≤ k < j
0 for k = j

yp
j

i+j−k,k−j−1 for j < k < i+ j

(4.8)

where yi,j = x2
i,j when p = 2.

Proof of Lemma 4.7. We will prove this for p odd, leaving the case
p = 2 (which is easier) as an exercise for the reader. We will relate
the description of the Lemma to the one given by Cohen in [CLM76].
There he speaks of Dyer-Lashof operations with upper indices Qs :
Hq → Hq+2(p−1)s. Within this proof Qs will denote a reindexed Dyer-
Lashof operation rather than the Milnor operation. We define Qs :
Hq → Hpq+(p−1)s, when q and s have the same parity, by

Qs = Q(s+q)/2
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with

Qs(x) =

{
0 for s < 0
xp for s = 0.

With this in mind, Cohen’s result says that

H∗(Ω
3S2pd+1) = P (Qi

2(u0) : i ≥ 0)⊗ E(Qj
1βQ

i
2(u0) : i > 0, j ≥ 0)

⊗P (βQj+1
1 βQi

2(u0) : i > 0, j ≥ 0),

where u0 ∈ H2pd−2 is the fundamental class. We define

ui = Qi
2(u0),

xi,j = Qj
1βQ

i
2(u0)

and yi,j = βQj+1
1 βQi

2(u0).

These elements have the indicated dimensions. It remains to show that
the action of the Steenrod algebra is as stated.

The action of Steenrod operations on Dyer-Lashof operations is given
by the Nishida relations. For operations on a q-dimensional class, these
are

P r
∗Qs =

∑
i

(−1)r+i
(

(p− 1)
(
s+q

2
− r
)

r − pi

)
Qs−2r+2piP

i
∗(4.9)

and

P r
∗βQs =

∑
i

(−1)r+i
(

(p− 1)
(
s+q

2
− r
)
− 1

r − pi

)
βQs−2r+2piP

i
∗

+
∑
i

(−1)r+i
(

(p− 1)
(
s+q

2
− r
)
− 1

r − pi− 1

)
Qs+1−2r+2piP

i
∗β.

(4.10)

In particular we have

P 1
∗Q2 =

q

2
Q0,

so P 1
∗ (ui) = P 1

∗Q2(ui−1)

= −Q0(ui−1)

= −upi−1.
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For k > 0 (4.9) gives

P pk

∗ Q2 = Q2P
pk−1

∗ ,

so P pk

∗ (ui) = P pk

∗ Q
k
2(ui−k)

= Qk
2P

1
∗ (ui−k)

= −Qk
2(upi−k−1)

= 0 by the Cartan formula.

We have β(ui) = xi,0 and β(xi,j+1) = yi,j by definition, and it follows
that β(xi,0) = 0 and β(yi,j) = 0.

The Nishida relations also give

P pk

∗ Q1 =

{
0 k = 0

Q1P
pk−1

∗ k > 0,

and for s = 1 or 2

P pk

∗ βQs =

{
−Qs−1β k = 0

βQsP
pk−1

∗ k > 0.

It follows that

P 1
∗ (xi,0) = P 1

∗ βQ
i
2(u0)

= −Q1βQ
i−1
2 (u0)

= −xi−1,1,

and for k > 0

P pk

∗ (xi,0) = P pk

∗ βQ
i
2(u0)

=

{
βQk

2P
1
∗Q

i−k
2 (u0) k < i

βQi
2P

pk−i
∗ (u0) k ≥ i

= 0.

For j > 0,

P 1
∗ (xi,j) = P 1

∗Q
j
1βQ

i
2(u0)

= 0,
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and when k > 0

P pk

∗ (xi,j) = P pk

∗ Q
j
1(xi,0)

=

{
0 k < j

Qj
1P

pk−j
∗ (xi,0) k ≥ j

=


0 k < j

Qj
1(xi−1,1) k = j

0 k > j

=

{
xi−1,j+1 k = j
0 k 6= j

as claimed.
Finally we have for j > 0,

P 1
∗ (yi,j) = P 1

∗ βQ
j+1
1 (xi,0)

= −Q0βQ
j
1(xi,0)

= −Q0(yi,j−1)

= −ypi,j−1,

and for all j when k > 0

P pk

∗ (yi,j) = P pk

∗ βQ
j+1
1 (xi,0)

= βQ1P
pk−1

∗ Qj
1(xi,0)

= βQ1P
pk−1

∗ (xi,j)

=

{
0 k − 1 6= j
βQ1(xi−1,j+1) k − 1 = j

=

{
0 k 6= j + 1
yi−1,j+1 k = j + 1

as claimed.

4.3. Morava K-theory. In this subsection we will study the Eilenberg-
Moore spectral sequence for K(n)∗(Ω

3S2dp+1) for d > 0. First we
need to know K(n)∗(Ω

2S2dp+1), which was computed by Yamaguchi
[Yam88]. We will assume for simplicity that p is odd. We could find
K(n)∗(Ω

2S2dp+1) with either the Atiyah-Hirzebruch spectral sequence
or the Eilenberg-Moore spectral sequence starting withK(n)∗(ΩS

2pd+1).
(Since ΩS2pd+1 splits after a single suspension, it is easy to work out
its Morava K-theory.) It turns out that the two spectral sequences are
the same up to reindexing, and we will describe the former.

We have

H∗(Ω
2S2dp+1) = E(ei : i ≥ 0)⊗ P (fi : i ≥ 0)(4.11)
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with |ei| = 2dpi − 1 and |fi| = 2dpi+1 − 2. (When p = 2, fi = e2
i .) In

terms of the Dyer-Lashof operations Qi we have

ei = Qi
1(e0)

and fi = βQi+1
1 (e0)

The coaction of the dual Steenrod algebra A∗ is given by

ei 7→ 1⊗ ei +
∑

0≤k<i τn+k ⊗ fp
n+k

i−n−k

and fi 7→
∑

0≤k<i ξk ⊗ f
pk

i−k.
(4.12)

In the Atiyah-Hirzebruch spectral sequence there are differentials

d1+|vn|(ei+n+1) = vnf
pn

i(4.13)

determined by the Milnor operation Qn. This leaves

E2pn = K(n)∗ ⊗ E(e0, e1, · · · en)⊗ P (fi)/(f
pn

i ).

Yamaguchi has shown that there are no higher differentials or mul-
tiplicative extensions. It is useful to reprove his theorem here.

Theorem 4.14. With notation as above,

K(n)∗(Ω
2S2dp+1) = K(n)∗ ⊗ E(e0, e1, · · · en)⊗ P (fi)/(f

pn

i ).

Moreover, the elements ei for 0 ≤ i ≤ n and fi for all i ≥ 0 are in the
image of k(n)∗(Ω

2S2dp+1).

Proof. We need to show that there are no higher differentials or mul-
tiplicative extensions. We know that Ω2S2dp+1 has a stable splitting
which must be respected by all differentials. The Snaith degrees of ei
and fi−1 are each pi.

We also know that we have a spectral sequence of Hopf algebras,
using the Künneth isomorphism for K(n)∗. Hence, differentials must
send primitives to primitives. E2pn is primitively generated. The set of
primitives with Snaith degree pm is a subset (depending on m) of

{em, fm−1, f
p
m−2, · · · , f

pn−1

m−n}.
The dimensions of these elements are all within |vn| of each other, so
there is no room for higher differentials, and E∞ = E2pn .

To show there are no multiplicative extensions, we must show that
fp

n

i = 0 in K(n)∗(Ω
2S2dp+1). If this element were nonzero it would be

a primitive with Snaith degree pi+n+1. This means it would have to be
a linear combination (with coefficients in k(n)∗) of the elements

{fi+n, fpi+n−1, · · · , f
pn−1

i+1 }.
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These elements all have dimensions higher than that of fp
n

i , so the
latter must be zero as claimed.

For the statement about k(n)∗(Ω
2S2dp+1), note that in the Atiyah-

Hirzebruch spectral sequence for this group, the indicated elements
cannot support any nontrivial differentials for the same dimensional
reason as before.

In order to use the Eilenberg-Moore spectral sequence (for which the
E2-term is Cotor), we need to know the coalgebra structure. This can
be described by giving the Verschiebung map V , which is dual to the
pth power map. In [Rav93a], the second author proved that

V (v−1
n fi+n) = fp

n−1

i .(4.15)

For the purposes of this calculation, it is convenient to ignore this
Verschiebung and proceed as if the Hopf algebra were primitively gen-
erated. The resulting Cotor group can be regarded as the E1-term of
Tamaki’s spectral sequence, and there will be some d1s reflecting the
behavior of V . In other words we can use the Eilenberg-Moore filtra-
tion of K(n)∗(Ω

2S2pd+1) to set up a spectral sequence converging to
the desired Cotor group.

With this in mind, let ui denote the desuspension of ei for 0 ≤ i ≤ n,

let xi,j denote that of fp
j

i for i ≥ 0 and 0 ≤ j < n, and let yi,j be
the transpotent of same. In terms of Dyer-Lashof operations on the
corresponding classes in ordinary homology, we have

ui = τ(Qi
1(e0)) = Qi

2(u0),

xi,j = τ(Qj
0βQ

i
1(e0)) = Qj

1βQ
i
2(u0)

and yi,j = κ(Qj
0βQ

i
1(e0)) = βQj+1

1 βQi
2(u0)

(4.16)

where τ denotes transgression (or desuspension) and κ denotes Kudo
transgression, or transpotence.

Under our indexing conventions the Eilenberg-Moore spectral se-
quence is in the first quadrant with ui, xi,j ∈ E1,∗

1 and yi,j ∈ E2,∗
1 ,

and dr raises the first index by r. We have

E1 = P (uk : 0 ≤ k ≤ n)⊗ E(xi,j : j < n)⊗ P (yi,j : j < n).

(In the corresponding ordinary mod p homology Eilenberg-Moore spec-
tral sequence, the E2-term has a similar description, but without upper
bounds on the subscripts, and there are no differentials.) It is a spectral
sequence of Hopf algebras (again, because of the Künneth isomorphism
for K(n)∗,) so differentials must send primitives to primitives. Note
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that the xi,js above are odd dimensional while the other generators
and K(n)∗ are even dimensional.

From (4.15) we get

d1(xi+n,0) = vnyi,n−1

(compare this with (4.8) for j = 0 and k = n) so we have

E2 = P (ui : 0 ≤ i ≤ n)⊗ E(xi,0 : i ≤ n)

⊗P (yi,j : j ≤ n− 2)⊗ E(xi,j : 1 ≤ j ≤ n− 1).

As in the case of the Atiyah-Hirzebruch spectral sequence above,
we can take advantage of the Snaith splitting and the Hopf algebra
structure. We can also take advantage of the Hopf map of (4.5) and
(4.6).

Theorem 4.17. In the Eilenberg-Moore spectral sequence for K(n)∗(Ω
3S2dp+1),

we have

d2pj−1(xi+n,j) = vny
pj

i+j,n−1−j for 1 ≤ j ≤ n− 1.

No other differentials occur and E∞ = E2pn−1.
For odd primes there are no multiplicative extensions,

K(n)∗(Ω
3S2dp+1) = K(n)∗[u0, · · ·un]⊗ E(xi,j : i+ j ≤ n)

⊗P (yi,j : j ≤ n− 2)/(yp
n−j−1

i,j ).

Proof. The primitives in E2 with Snaith degree pm for m > n are

{xm−j,j : 1 ≤ j ≤ n− 1} ∪
{yp

`

m−`−k−1,k : 0 ≤ k ≤ n− 2, 0 ≤ `+ k ≤ m− 2} ∪
{up

m−k

k : 0 ≤ k ≤ n};
(4.18)

for 1 ≤ m ≤ n we have to add the element xm,0.
The dimensions of these elements are

|xm−j,j| = 2dpm − 2pj − 1,

|yp
`

m−`−k−1,k| = 2dpm − 2p`+k+1 − 2p`

and |up
m−k

k | = 2dpm − 2pm−k
(4.19)

For m ≤ n, these dimensions are all within |vn| of each other, so there
can be no higher differentials in these Snaith degrees. In particular the
elements uk for 0 ≤ k ≤ n, xi,j for i + j ≤ n and yi,j for i + j < n are
all permanent cycles.
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For m = n+ 1, (4.18) reads

{xn+1−j,j : 1 ≤ j ≤ n− 1} ∪
{yp

k

n−j−k,j : 0 ≤ j ≤ n− 2, 0 ≤ j + k ≤ n− 1} ∪
{up

n+1−k

k : 0 ≤ k ≤ n}.
The dimensions of these are compatible with the desired differentials

d2pj−1(xn+1−j,j) = vny
pj

1,n−1−j for1 ≤ j ≤ n− 1,(4.20)

which can be inferred from (4.8). The only remaining primitives in
this Snaith degree are even dimensional, all of the odd dimensional
ones having been accounted for.

Now consider the primitives in Snaith degree pn+i for i > 1. We
claim that the only differentials that occur here are

d2pj−1(xi+n−j,j) = vny
pj

i,n−j−1 for j ≤ n− 1.(4.21)

Here we make use of the Hopf map H. Its (i− 1)th iterate is

Ω3S1+2pn Hi

−→ Ω3S1+2pn+i+1

,

which induces a map

Tpj
Hi

−→ Σ2(p−1)ijTij.

In the Eilenberg-Moore spectral sequence, the induced map sends the
source and target of (4.21) to those of (4.20). Thus (4.21) holds provided
that there is no earlier differential on xi+n−j,j. Once these differentials
have been taken into account, there are no odd dimensional primitives
left in Snaith degrees above pn, so the spectral sequence collapses from
E2pn−1 .

To prove (4.21) note that the elements of (4.19) with ` + k < n + 1
have dimensions too high to be a target of a differential on xn+i−j,j,
the ones with ` + k = n + 1 are the proposed targets, and the one
with `+ k > n+ 1 are powers of elements of lower Snaith degree that

have already been killed. The elements up
n+i−k

k have either too high a
dimension (if i > k) or too high a filtration (if i ≤ k) to be the target
of an earlier differential on xn+i−j,j.

It follows that

E∞ = E2pn−1

= K(n)∗[u0, · · ·un]⊗ E(xi,j : i+ j ≤ n)

⊗P (yi,j : j ≤ n− 2)/(yp
n−j−1

i,j )

This spectral sequence converges to K(n)∗(Ω
3S2dp+1).
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To show there are no multiplicative extensions, we need to show that

yp
n−1−j

i,j = 0. If it is nonzero, it must be a K(n)∗-linear combination of

the elements up
n+i−k

k for 0 ≤ k ≤ n, but the latter do not have the right
dimensions modulo |vn|, except possibly for p = 2.

4.4. The computation of Y (n)∗(Ω
3S1+2pn) via the Eilenberg-Moore

spectral sequence. In this subsection we will prove the following.

Theorem 4.22. For each n > 0 there is an additive isomorphism

Y (n)∗(Ω
3S2dp+1) = Y (n)∗ ⊗K(n)∗ K(n)∗(Ω

3S2dp+1).

The isomorphism here need not be multiplicative. We will say more
about this below after the proof. Before proving his result we need the
following.

Lemma 4.23. There is an additive isomorphism

Y (n)∗(Ω
2S2dp+1) = Y (n)∗ ⊗K(n)∗ K(n)∗(Ω

2S2dp+1).

Proof. Consider first the Atiyah-Hirzebruch spectral sequence for y(n)∗(Ω
2S2dp+1).

We have the differentials of (4.13), which leaves

E2pn = y(n)∗ ⊗ E(e0, e1, · · · en)⊗ P (fi)/(vnf
pn

i ).

It follows that in the Atiyah-Hirzebruch spectral sequence for Y (n)∗(Ω
2S2dp+1)

we have

E2pn = Y (n)∗ ⊗ E(e0, e1, · · · en)⊗ P (fi)/(f
pn

i ).

Now we can argue as in the proof of 4.14 that there can be no higher
differentials for dimensional reasons.

Proof of Theorem 4.22. To prove the theorem we will use Tamaki’s
spectral sequence and the computation is essentially the same as that
of §4.3. It is not necessary to know π∗(Y (n)) explicitly. In order
to use Tamaki’s spectral sequence we will use the computation of
Y (n)∗(Ω

2S2dp+1) of 4.23. The group Y (n)∗(Ω
2S2dp+1) is a free Y (n)∗-

module. This means that the E2-term of the Tamaki spectral sequence
can be identified as a Cotor group as in the Morava K-theory case.

In this setting, Tamaki’s spectral sequence is one of Hopf algebras,
despite the absence of a Künneth isomorphism. The usual structure
maps for X an iterated loop space on a sphere give homomophisms
both ways between Y (n)∗(X) and Y (n)∗(X ×X). Further, we always
have a Künneth map Y (n)∗(X)⊗Y (n)∗ Y (n)∗(X)→ Y (n)∗(X). In this
setting, however, the diagonal map Y (n)∗(X) → Y (n)∗(X × X) need
not factor through Y (n)∗(X)⊗Y (n)∗ Y (n)∗(X). We do have a Künneth
isomorphism for the E2 term of the Tamaki spectral sequence, so that
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this E2 term is a Hopf algebra, and the spectral sequence will be one
of Hopf algebras, provided each Er is free over Y (n)∗. The differentials
are given below, and none of them introduce any Y (n)∗-torsion into
any Er, so we have the desired freeness.

In order to use the Tamaki spectral sequence we need to know the
coalgebra structure. As in the computation for Morava K-theory, it is
convenient to ignore the nontriviality of the Verschiebung and proceed
as if the Hopf algebra were primitively generated. The resulting Cotor
group can be regarded as the E1-term of the Tamaki spectral sequence.
It is generated as an algebra by elements in cohomological degrees 1
and 2, so the generators must be primitive. With this in mind, we can
define ui, xi+1,j, and yi+1,j as in (4.16). As before we have

E1 = Y (n)∗ ⊗ P (ui : 0 ≤ i ≤ n)⊗ E(xi,0 : i ≤ n)

⊗P (yi,j : j ≤ n− 1)⊗ E(xi,j : 0 ≤ j ≤ n− 1).

This Eilenberg-Moore spectral sequence maps to the one for Morava
K-theory where we have the differentials of (4.21), namely

d2pj−1(xi+n−j,j) = vny
pj

i,n−j−1 for j ≤ n− 1.

Similar differentials will occur in the spectral sequence at hand if they
are not preempted by earlier ones. In Snaith degrees < pn+1 we can
compare with the Eilenberg-Moore spectral sequence for y(n)∗(Ω

3S2pd+1)
and conclude that there are no differentials for dimensional reasons, so
again the elements ui for i ≤ n, xi,j for i+ j ≤ n and yi,j for i+ j < n
are all permanent cycles.

In Snaith degree pn+1, the primitives are

{xn+1−j,j : 0 ≤ j ≤ n− 1} ∪
{yp

k

n−j−k,j : 0 ≤ j ≤ n− 1, 0 ≤ j + k ≤ n− 1} ∪
{up

n+1−k

k : 0 ≤ k ≤ n}

As in the proof of 4.17,we can use the Hopf map H to rule out many dif-
ferentials. If some xn+1−j,j supports a nontrivial differential, its target
must be in the kernel of H since H(xn+1−j,j) = xn−j,j is a perma-

nent cycle. Thus the target must be a multiple of either yp
j

1,n−j for

0 ≤ j ≤ n− 1 or up
n+1

0 . Hence the expected differentials

d2pj−1(xn+1−j,j) = vny
pj

1,n−1−j

follow by induction on j.
In larger degrees we can rule out other differentials on xn+i,j as in

the proof of 4.17.
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In the proof of 4.17 we knew that each yi,j with j ≤ n − 2 was a
permanent cycle because the remaining primitives in the same Snaith
degree were also even dimensional. However, this argument is not
good enough here because we do not know (and we will see that it
is not true) that Y (n)∗ is even dimensional. We have to consider the
possibility that

dpi+j+1−k−2(yi,j) = αup
i+j+1−k

k(4.24)

for some α ∈ Y (n)∗ and n ≤ k ≤ 2n.
We can use the Hopf map to exclude such a differential in the fol-

lowing way. The Snaith summands of Ω3S2dp+1 are independent of d.
If d is divisible by pm then our spectral sequence is in the image of the
mth iterate of the Hopf map H. Thus we get a diagram

yi,j αup
i+j+1−k

k

yi+m,j α′up
i+j+m+1−k′

k′

w
dr

w

dr′

u

Hm

u

(4.25)

where

r + 2 = pi+j+1−k

and r′ + 2 = pi+j+m+1−k′

with n ≤, k, k′ ≤ 2n. Since Hm induces a map of spectral sequences,
we have r ≥ r′, so

i+ j + 1− k ≥ i+ j +m+ 1− k′

k′ ≥ k +m

This is incompatible with the upper bound on k′ since we can do this
for any value of m, so there can be no nontrivial differential of the form
(4.24).

We will now explain why the isomorphism of 4.22 need not be mul-
tiplicative. The argument given in the proof of 4.17 to show that there
are no multiplicative extensions does not carry over to the computation

of Y (n)∗(Ω
3S1+2pn). Indeed yp

n−1−j

i,j could be a nontrivial Y (n)∗-linear

combination of the elements up
n+i−k

k for 0 ≤ k ≤ n, e.g.,

v−1
n bi+j+1,n−2−ju

pn+i

0
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when i+ j ≥ n. Here bi,j denotes the image of yi−n,j under the map of
(3.18).

The use of the Hopf map in the last paragraph of the proof above is
similar to its use by the first author in [Mah77], and it deserves further
comment. In that paper there was a 2-local stable splitting

Ω2S9 '
∨
i>0

Σ7iBi

where the stable summand Bi is known now to be the Brown-Gitler
spectrum B([i/2]) with bottom cell in dimension 0 and top cell in
dimension i− α(i). There one wanted to show that a certain element

xj ∈ Ext1,1+2j

A∗
(Z/(2), H∗(B2j))

was a permanent cycle. The Hopf map induces

Σ−2j+1

B2j+1
H−→ Σ−2jB2j

which sends xj+1 to xj. Now suppose there is a nontrivial differential

dr(xj) = zj ∈ Ext1+r,r+2j

A∗
(Z/(2), H∗(B2j)).

It was shown that no such zj is in the image of the Hopf map H, so
the differential cannot occur.

This amounts to saying that there is an element

x ∈ π0(lim
←

Σ−2jB2j)

which projects to an element representing xj. Using properties of
Brown-Gitler spectra one can produce maps

S0 → ΣRP−2
−∞ → lim

←
Σ−2jB2j

where the first map is Spanier-Whitehead dual to the transfer map
t : RP∞1 → S0, and the composite is the desired x.

Dually one can look for an element

x∗ ∈ π0(lim
→

Σ2jDB2j)

which is given by the composite

lim
→

Σ2jDB2j −→ RP∞1
t−→ S0.

In [Car83] Carlsson showed that H∗(lim→Σ2jDB2j) has H∗(RP∞1 ) as a
direct summand as an A-module, and that both are unstable injectives.
Using results of Goerss-Lannes [GL87] or Lannes-Schwartz [LS89], one

can deduce that the spectrum lim→Σ2jDB2j has RP∞1 as a retract.
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One can ask analogous questions about the triple loop summands Ti.
The Hopf map induces

Σ−2piTpi
H−→ Σ−2iTi

for each i. This map sends yi+1,j to yi,j. Our proof shows that for each
0 ≤ j ≤ n− 2 there is an element

yj ∈ lim
←
Y (n)−2pj+1−2(Σ−2pkTpk)

which projects to yi,j for each i. Note that lim← Y (n)∗(Σ
−2pkTpk) need

not be the same as Y (n)∗(lim←Σ−2pkTpk) since homology does not com-
mute with inverse limits, but it is the former group which interests us
here.

The limit problem disappears when we dualize, since homology and
cohomology do commute with direct limits. We have an element

y∗j ∈ Y (n)2pj+1+2(lim
→

Σ2pkDTpk).

and similarly for Morava K-theory.
An analog of Carlsson’s theorem would be the following.

Conjecture 4.26. The spectrum lim→Σ2pkDTpk has a copy of the sus-
pension spectrum of the Eilenberg-Mac Lane space K(Z/(p), 2) as a re-
tract.

Kuhn [Kuh] has recently proved the corresponding statement in co-
homology for p = 2.

A proof of 4.26 (or the construction of a suitable map from the direct
limit to K(Z/(p), 2)) might lead to an independent construction of the
elements y∗j as follows. K(n)∗(K(Z/(p), 2)) is known [RW80] and it is
likely that Y (n)∗(K(Z/(p), 2)) has a similar description. The former
has n− 1 algebra generators which might map to the desired y∗j .

For more details, see [Rav98]

5. Toward a proof of the differentials conjecture

5.1. The E2-term of the localized Thomified Eilenberg-Moore
spectral sequence. Now we are ready to describe our program to
prove our conjecture about differentials, 3.16. We will use the map of
(3.18) from the localized Thomified Eilenberg-Moore spectral sequence
for Y (n)∗(Ω

3S1+2pn) to the localized Adams spectral sequence for Y (n).
Because the material in this section becomes rather technical at times,
we will illustrate each main idea in the case n = 2, where the degree of
complexity is quite manageable. To begin this extended example, we
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recall from Corollary 2.11 that the localized Adams-Novikov spectral
sequence for π∗(L2y(2)) has

E2 = K(2)∗[v3, v4]⊗ E(h3,0, h4,0, h3,1, h4,1).

In this case, the localized Adams-Novikov spectral sequence collapses

from this point, because the only possible differential (d3(h3,1) = v−p
4

2 h3,0h3,1h4,0h4,1?)
is ruled out because h3,1 is easily seen to be a permanent cycle in the
unlocalized Adams-Novikov spectral sequence for π∗(y(2)).

For all n ≥ 1, we know from §3.3 that the E2-term of the localized
Thomified Eilenberg-Moore spectral sequence is

v−1
n ExtH∗(Ω2S1+2pn )⊗B(n)∗(Z/(p),Z/(p)),

where B(n)∗ is as in (2.2) and H∗(Ω
2S1+2pn) is given in (4.11).

Lemma 5.1. (i) The E2-term of the localized Thomified Eilenberg-
Moore spectral sequence for Y (n)∗(Ω

3S1+2pn) is

ExtP ′
(
Z/(p), v−1

n ExtQ⊗H∗(Ω2S1+2pn )(Z/(p),Z/(p))
)

= R(n)∗ ⊗ E(hn+i,j)⊗ P (bn+i,j)

⊗P (u0, . . . , un)⊗ E(x̃i,j)⊗ P (ỹi,j).

where the indices i and j satisfy i > 0 and 0 ≤ j ≤ n− 1, and

R(n)∗ = K(n)∗[vv+1, . . . , v2n].

The elements x̃i,j and ỹi,j are related to the homology classes xi,j
and yi,j in H∗(Ω

3S1+2pn) and will be defined below in (5.9) and
(5.10).

(ii) Under the map of (3.18),

vn+k 7→ vn+k,

hn+i,j 7→ hn+i,j,

bn+i,j 7→ bn+i,j,

uk 7→ vn+k,

x̃i,j 7→ hn+i,j,

and ỹi,j 7→ bn+i,j.
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(iii) The H∗(y(n))-comodule structure (as in Lemma 3.17) on these
generators is given by

ψ(vn+i) =
∑

0≤k≤i

ξp
n+k

i−k ⊗ vn+k,

ψ(hn+i,j) =
∑

0≤k≤n−1−j

ξ
pj

k ⊗ hn+i−k,j+k,

ψ(bn+i,j) =
∑

0≤k≤n−1−j

ξ
pj+1

k ⊗ bn+i−k,j+k,

ψ(ui) = 1⊗ ui +
∑

0≤k≤i

τ k ⊗ x̃i−k,k,

ψ(x̃i,j) =
∑

0≤k≤n−1−j

ξ
pj

k ⊗ x̃i−k,j+k

and ψ(ỹi,j) =
∑

0≤k≤n−1−j

ξ
pj+1

k ⊗ ỹi−k,j+k.

In the n = 2 case, the localized Thomified Eilenberg-Moore spectral
sequence has

E2 = K(2)∗[v3, v4]⊗ E(h3,0, h4,0, . . . , h3,1, h4,1, . . . )

⊗P (b3,0, b4,0, . . . , b3,1, b4,1, . . . )

⊗P (u0, u1, u2)⊗ E(x̃1,0, x̃2,0, . . . , x̃1,1, x̃2,1 . . . )

⊗P (ỹ1,0, ỹ2,0, . . . , ỹ1,1, ỹ2,1 . . . ).

The values of the map of 3.18 and the coaction are easily read off from
the Lemma above.

Proof. (i) We begin by describing the coproduct in H∗(Ω
2S1+2pn) ⊗

B(n)∗ using (2.24) and (4.12). Elements in 1⊗B(n)∗ have their usual
coproduct, while coproducts for the generators of H∗(Ω

2S1+2pn)⊗1 are
given by

ei ⊗ 1 7→ ei ⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗ ei ⊗ 1

+
∑

0≤k<i−n

1⊗ τn+k ⊗ fp
n+k

i−n−k ⊗ 1

and fi ⊗ 1 7→ fi ⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗ fi ⊗ 1

+
∑

0<k<i−n

1⊗ ξn+k ⊗ f
pn+k

i−n−k ⊗ 1.
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The best way to get at the cohomology of the semitensor product
H∗(Ω

2S1+2pn)⊗B(n)∗ is via the Hopf algebra extension

F ⊗ P ′∗ −→ H∗(Ω
2S1+2pn)⊗B(n)∗ −→ E ⊗Q′∗(5.2)

In the Cartan-Eilenberg spectral sequence for this, we have

E2 = ExtF⊗P ′∗(Z/(p),ExtE⊗Q′∗(Z/(p),Z/(p)))

= ExtF⊗P ′∗(Z/(p), U ⊗ V
′)

where P ′∗, Q
′
∗ and V ′ are as in (2.4), (2.5), and (2.7),

U = P (u0, u1, . . . ),

E = E(e0, e1, . . . ),

and F =

{
P (f1, f2, . . . ) for p > 2
P (e2

0, e
2
1, . . . ) for p = 2.

The coalgebra structure of F ⊗ P ′∗ and the structure of U ⊗ V ′ as a
left comodule over it for odd primes are given by

ξi 7→
∑

0≤k≤i ξ
pk

i−k ⊗ ξk,
fi 7→ fi ⊗ 1 +

∑
0≤k<i ξk ⊗ f

pk

i−k,

vi 7→
∑

0≤k≤i ξ
pk

i−k ⊗ vk
and ui 7→ 1⊗ ui +

∑
0≤k<i f

pk

i−k ⊗ vk,

(5.3)

where ξ0 = 1, ξi = 0 for 0 < i ≤ n, vi = 0 for 0 ≤ i < n, ξk is
the conjugate of ξk, and fk is the conjugate of fk in F ⊗ P ′∗. These
formulas follow from the coproduct in A∗ and the coaction of A∗ on
H∗(Ω

2S1+2pn).
As in (2.16) we can enlarge U ⊗ V ′ to a ring

Z = P (u0, ..., un, zn+1, . . . ; vn, ..., v2n, w2n+1, . . . ) ⊂ v−1
n U ⊗ V ′;(5.4)

where w2n+i is as in (2.15), and zn+i is defined recursively for i > 0 by
a similar formula,

zn+i = v−1
n

(
un+i −

∑
0<k<i

vn+kz
pk

n+i−k

)
.(5.5)

Note that

v(pi−1)/(p−1)
n zn+i ∈ U ⊗ V ′

and that

v(pi−1)/(p−1)
n zn+i ≡ (−1)i+1v

(pi−1−1)/(p−1)
n+1 up

i−1

n+1 mod (vn).(5.6)
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We claim that

ψ(zn+i) = 1⊗ zn+i − fp
n

i ⊗ 1 +
∑
n<k<i

ξ
pn

k ⊗ z
pk

n+i−k.(5.7)

The formula for ψ(w2n+i) of (2.18) is the homomorphic image of this
under the map of (3.18). We will verify the claim after proving the rest
of the lemma.

It follows from (5.7) that Z is free as a comodule over

P (fp
n

1 , fp
n

2 , . . . )⊗ P (ξp
n

n+1, ξ
pn

n+2, . . . )

and that

ExtF⊗P ′∗(Z/(p), Z)
= P (u0, . . . un)⊗ P (vn, . . . , v2n)⊗

Ext
F/(fp

n

i )⊗P ′∗/(ξ
pn

n+i))
(Z/(p),Z/(p))

= P (u0, . . . un)⊗ P (vn, . . . , v2n)

⊗

 E(x̃i,j)⊗ P (ỹi,j)
⊗E(hn+i,j)⊗ P (bn+i,j) for p odd

P (x̃i,j)⊗ P (hn+i,j) for p = 2,

(5.8)

where the indices i and j satisfy i > 0 and 0 ≤ j ≤ n − 1, x̃i,j cor-
responds (roughly speaking; see (5.9) below for the precise definition)

to the element −fp
j

i (which is primitive in the quotient F/(fp
n

i ) ⊗
P ′∗/(ξ

pn

n+i)), and ỹi,j is its transpotent. In particular this Ext group is
vn-torsion free.

As in (2.20), localizing inverts vn, and we get the stated value of
E2 for the Cartan-Eilenberg spectral sequence for (5.2). To show that
the spectral sequence collapses from E2, it suffices to show that the
elements uk and vn+k for 0 ≤ k ≤ n are permanent cycles. This follows
from the fact that ek and τn+k are primitive for these k.

Next we need to define the elements x̃i,j and ỹi,j. The localized
double complex associated with (5.2) is

CF⊗P ′∗(v
−1
n CE⊗Q′∗(Z/(p))).

The algebra E⊗Q′∗ is primitively generated, so we can replace its local-
ized cobar complex by its localized Ext group U⊗v−1

n V ′. The coaction
of F ⊗ P ′∗ on it was described above in (5.3), and the corresponding
local Ext group was given in (5.8). In the cobar complex we have by
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(5.7) and (2.28),

d(zn+i) = −fp
n

i ⊗ 1 +
∑
n<k<i

ξ
pn

k ⊗ z
pk

n+i−k,

so this element is a cocycle. It follows that

x̃i,j = −fp
j

i ⊗ 1 +
∑
n<k<i

ξ
pj

k ⊗ z
pj+k−n

n+i−k(5.9)

is also one.
To define ỹi,j (the transpotent of x̃i,j), we proceed as follows. We

regard x̃i,j as an element in the algebra F ⊗ P ′∗ ⊗ U ⊗ v−1
n V ′ and let

x̃
(m)
i,j denote the image of its mth power in the algebra

C1
F⊗P ′∗(U ⊗ v

−1
n V ′) = F ⊗ P ′∗ ⊗ U ⊗ v−1

n V ′.

Then a routine calculation (using only the fact that xi,j is a cocycle)
shows that

d(x̃
(m)
i,j ) =

∑
0<`<m

(
m

`

)
x̃

(`)
i,j ∪ x̃

(m−`)
i,j ,

where ∪ denotes the cup product partly described in (2.29). It follows
that

ỹi,j =
∑

0<m<p p
−1
(
p
m

)
x̃

(m)
i,j ∪ x̃

(p−m)
i,j

= −
∑

0<m<p p
−1
(
p
m

)
fp

jm
i ⊗ fp

j(p−m)
i ⊗ 1

+
∑

n<k<i

∑
0<m<p p

−1
(
p
m

)
ξ
pj+k−nm

k ⊗ ξp
j+k−n(p−m)

k ⊗ zp
1+j+k−n

n+i−k + . . .

(5.10)

is the desired cocycle.
(ii) The assertion about the map of (3.18) follows immediately from

the definitions of the elements in question; compare (5.9) with (2.19).
(iii) The first three cases were proved in Lemma 3.17. The last three

can be read off from the A∗-comodule structure on H∗(Ω
3S1+2pn).
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Finally, we need to verify (5.7). We will do so by manipulating the
following power series in a dummy variable t. Let

v(t) =
∑

i≥0 vn+it
pi ,

v̂(t) =
∑

i>0 v2n+it
pn+i

,
v(t) = v−1(t),

the functional inverse of v(t),

u(t) =
∑

i≥0 uit
pi ,

û(t) =
∑

i>0 un+it
pn+i

,

w(t) =
∑

i>0 w2n+it
pn+i

,

z(t) =
∑

i>0 zn+it
pn+i

,

ξ(t) =
∑

i≥0 ξ
pn

i t
pi ,

ξ(t) =
∑

i≥0 ξ
pn

i t
pi ,

f(t) =
∑

i≥0 f
pn

i tp
n+i

where f0 = 1,

and f(t) =
∑

i≥0 f
pn

i t
pn+i

.

(5.11)

In what follows we will drop the variable t and denote functional com-
position by the symbol ◦. In this way (5.3) can be rewritten as

ψ(v) = (1⊗ v) ◦ (ξ ⊗ 1)

so ψ(v) = (ξ ⊗ 1) ◦ (1⊗ v),

ψ(û) = 1⊗ û+ (1⊗ v) ◦ ((f − 1)⊗ 1),

and ψ(f − 1) = (ξ ⊗ 1) ◦ (1⊗ (f − 1)) + (f − 1)⊗ 1

so ξ ◦ f = 1 + ξ − f

since in any connected Hopf algebra, ψ(x) = x′⊗x′′ implies that x′x̄′′ =
0.

Similarly (2.15) and (5.5) can be rewritten as

ψ(û) = 1⊗ û+ (1⊗ v) ◦ ((f − 1)⊗ 1),

û = v ◦ z
so z = v ◦ û,

and v̂ = v ◦ w
so w = v ◦ v̂.
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Thus we have

ψ(z) = ψ(v) ◦ ψ(û)

= (ξ ⊗ 1) ◦ (1⊗ v) ◦ (1⊗ û+ (1⊗ v) ◦ ((f − 1)⊗ 1))

= (ξ ⊗ 1) ◦ (1⊗ v ◦ û) + (ξ ⊗ 1) ◦ ((f − 1)⊗ 1)

= (ξ ⊗ 1) ◦ (1⊗ z) + ξ ◦ (f − 1)⊗ 1

= (ξ ⊗ 1) ◦ (1⊗ z) + (1− f)⊗ 1,

which is a reformulation of (5.7).

5.2. Short differentials. It follows from 5.1(ii) that a differential on
x̃i,j forces a similar one on hn+i,j, and if ỹi,j is a permanent cycle so is
bn+i,j. As in the computations of §4.3 and §4.4 we have more control
over such differentials because they must respect the Snaith splitting
and the Hopf algebra structure. Thus Conjecture 3.14 is a consequence
of the following.

Conjecture 5.12. For i > 0 and 0 ≤ j ≤ n− 1, the element x̃n+i−j,j
survives to E2pj and supports a nontrivial differential

d2pj(x̃n+i−j,j) = vnỹ
pj

i,n−1−j.

Each ỹi,j for i > 0 and 0 ≤ j ≤ n− 2 survives to E1+2pn−1.

Note that if in addition each ỹi,j were a permanent cycle, then we
would have

E∞ = R(n)∗ ⊗ P (u0, . . . , un)⊗ E(x̃i,j, hn+i,j : i+ j ≤ n)

⊗ P (ỹi,j, bn+i,j)/(ỹ
pn−1−j

i,j , bp
n−1−j

n+i,j ).(5.13)

In the n = 2 case, Conjecture 5.12 predicts that all the x̃i,0s survive
to E2 and that d2(x̃3,0) = v2ỹ1,1, d2(x̃4,0) = v2ỹ2,1,, etc. Further, we
expect that all the x̃i,1s survive to E2p, and that d2p(x̃2,1) = v2ỹ

p
1,0,

d2p(x̃3,1) = v2ỹ
p
2,0, etc. If the ỹi,0s were all permanent cycles, the the

localized Thomified Eilenberg-Moore spectral sequence would collapse
from E2p and have

E∞ = K(2)∗[v3, v4] ⊗P (u0, u1, u2)⊗ E(h3,0, h4,0, h3,1, x̃1,0, x̃2,0, x̃1,1)

⊗P (b3,0, b4,0, . . . , ỹ1,0, ỹ2,0, . . . )/(b
p
i,0, ỹ

p
j,0).

For all n > 0, one might think that Conjecture 5.12 is a consequence
of Theorems 4.17 and 4.22, but this is not the case. The differentials of
4.17 suggest but do not actually imply those of 5.12, because the two
spectral sequences are based on different filtrations. The method used
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in the proof of 4.22 to show that the yi,j are permanent cycles does not
imply that the ỹi,j are.

That method can be used to show that there is an element congruent
to ỹi,j modulo decomposables, namely Hn+1(ỹi+n+1,j) (the image of
ỹi+n+1,j under the (n + 1)th iterate of the Hopf map H), which is a
permanent cycle. We can use Lemma 5.16 below to identify it as

Hn+1(ỹi+n+1,j) = ỹi,j −
∑

0≤k≤n

βi+k,j(v
−1
n un−k)

pi+j+k+1−n
(5.14)

for certain coefficients βi+k,j defined in 5.16. The image of this element
under the map of (3.18) is

bn+i,j −
∑

0≤k≤n

βi+k,j(v
−1
n v2n−k)

pi+j+k+1−n
= 0 by 5.16 below.

Previously we had thought this image was congruent to bn+i,j modulo
decomposables, which would imply the collapsing of the localized Adams
spectral sequence for Y (n), but unfortunately this is not the case. Thus
the survival of the element of (5.14) is of no help in determining the
structure of Y (n)∗. On the other hand, the low dimensional compu-
tation showing that x̃i,j survives does imply the survival of hn+i,j for
i+ j ≤ n.

We have instead

Conjecture 5.15 (Second differentials conjecture). In the localized Adams
spectral sequence for Y (n) for n > 1 the elements hn+i,0 and hn+i,1 sur-
vive to E2 and E2p respectively, and there are differentials

d2(x̃n+i,0 + sn+i,0) = vnỹi,n−1

and d2p(x̃n+i−1,1 + sn+i−1,1) = vnỹ
p
i,n−2

for decomposables sn+i−j,j (not to be confused with, but mapping to
the decomposables s2n+i−j,j of Theorem 3.16). The elements ỹi,j for
j < n− 1 survive to E2p+1, so

E2p+1 = R(n)∗ ⊗ P (u0, . . . , un)⊗ E(x̃i,0, hn+i,0 : 1 ≤ i ≤ n)

⊗E(x̃i,1, hn+i,1 : 0 ≤ i ≤ n− 1)

⊗E(x̃i,j, hn+i,j : i > 0, 2 ≤ j ≤ n− 1)

⊗P (ỹi,n−2, bn+i,n−2 : i > 0)/(ỹpi,n−2, b
p
n+i,n−2)

⊗P (ỹi,j, bn+i,j : i > 0, 0 ≤ j ≤ n− 3).
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We will make use of the Hopf map as before. Consider the following
diagram in which both rows are fiber sequences.

ΩJpn−1S
2 × Ω3S1+2pn Ω2S3 × pt. Ω2S1+2pn × Ω2S1+2pn

ΩJpn−1S
2 × Ω3S1+2pm+n

Ω2S3 × pt. Ω2S1+2pn × Ω2S1+2pm+n

w

u

ΩJpn−1S
2×Hm

w

u

Ω2S1+2pn×Hm

w w

This gives us a map from the Thomified Eilenberg-Moore spectral se-
quence for y(n)∗(Ω

3S1+2pn) to the one for y(n)∗(Ω
3S1+2pn+k

). Now the
second triple loop space has the same Snaith summands as the first, so
the two spectral sequences are isomorphic. Thus the Hopf map H in-
duces an endomorphism of our spectral sequence which is multiplicative
and linear over R(n)∗ ⊗ E(hn+i,j)⊗ P (bn+i,j).

Lemma 5.16. The Hopf map described above sends

uk+1 7→ uk,

x̃i+1,j 7→ x̃i,j − ηi,j(v−1
n un)p

i+j−n

and ỹi+1,j 7→ ỹi,j − βi,j(v−1
n un)p

i+j+1−n
.

where the coefficients ηi,j and βi,j vanish for i ≤ n and are defined
recursively by

hn+i,j =
∑

0≤k≤n

ηi+k,j(v
−1
n v2n−k)

pi+j+k−n

≡ ηn+i,j mod (vn+1, . . . , v2n)

and bn+i,j =
∑

0≤k≤n

βi+k,j(v
−1
n v2n−k)

pi+j+k+1−n

≡ βn+i,j mod (vn+1, . . . , v2n).

This along with Conjecture 3.16 implies that

d2pj(ηn+i−j,j) = vnβ
pj

i,n−1−j(5.17)

for j = 0, 1.

Proof. The value on uk+1 is immediate.
To evaluate H(x̃i+1,j) we need first to compute H(zn+i+1) for zn+i+1

as defined in (5.5). Let

ri =

{
0 for i = 0

v−1
n

(
vn+i −

∑
0<k<i vn+kr

pk

i−k

)
for i > 0.
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We will show by induction on i that

H(zn+i+1) =

{
v−1
n un for i = 0

zn+i − (v−1
n un)p

i
ri for i > 0.

This is immediate for i = 0. For the inductive step with i > 0, write

zn+i+1 = v−1
n

(
un+i+1 −

∑
0<k≤i

vn+kz
pk

n+i+1−k

)
,

so we have

H(zn+i+1) = v−1
n

(
H(un+i+1)−

∑
0<k≤i

vn+kH(zp
k

n+i+1−k)

)

= v−1
n

(
un+i −

∑
0<k≤i

vn+k(zn+i−k − ri−k(v−1
n un)p

i−k
)p
k

)
= zn+i − v−1

n vn+i(v
−1
n un)p

i

+
∑

0<k≤i

vn+kr
pk

i−k(v
−1
n un)p

i

= zn+i − ri(v−1
n un)p

i

as claimed.
Now the Hopf map commutes with the coboundary, so we have

H(x̃i+1,n) = H(d(zn+i+1))

= d(H(zn+i+1))

= d(zn+i − wn+i(v
−1
n un)p

i

)

= x̃i,n − d(wn+i)(v
−1
n un)p

i

.

It follows that H(x̃i,j) is as indicated where

ηi,n = d(wn+i)

and ηi,j is its pj−nth power. For i ≤ n this vanishes since wn+i is a
cocycle.

For the recursive definition we use the series notation of (5.11) with

r(t) =
∑
i>0

rit
pi ,

so we have

v ◦ r = v − vn.
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It follows that

r = v ◦ (v − vn)

= 1− v ◦ vn
so r ◦ v−1

n ◦ (v − v̂) = v−1
n ◦ (v − v̂)− v ◦ (v − v̂)

= v−1
n ◦ (v − v̂)− 1 + v ◦ v̂

= v−1
n ◦ (v − v̂)− 1 + w

Now the expression v−1
n ◦ (v − v̂) is concentrated in dimensions below

that of w2n+1. Thus for each i > 0 we have

w2n+i =
∑

0≤k≤n

ri+k(v
−1
n v2n−k)

pi+k .

Taking the coboundary gives

hn+i,n =
∑

0≤k≤n

ηi+k,n(v−1
n v2n−k)

pi+k .

so

hn+i,j =
∑

0≤k≤n

ηi+k,j(v
−1
n v2n−k)

pi+j+k−n .

Taking the transpotent of the above gives the desired formula for
H(ỹi+1,j).

The proof of 5.1(i) can be modified to give a similar description of the
unlocalized E2-term in Snaith degrees less than pn+1. One can make an
argument similar to that of 3.5 to show that there are no differentials
in that range.

Alternately, one can look at the ordinary Adams spectral sequence
for y(n)∗(Ω

3S1+2pn). Using the skeletal filtration one gets a prespectral
sequence converging to the Adams E2-term with

E2 = H∗(Ω
3S1+2pn)⊗ ExtB(n)∗(Z/(p),Z/(p)).

Again there is no room for differentials in the range of the homology
of the pnth Snaith summand. The first differentials occur in Snaith
degree pn+1. They are induced by the Milnor operation Qn given in
(4.8), namely

d2pn−1(un+1) = vnx1,n and

d2pn−1(xn+1−j,j) = vny
pj

1,n−1−j for 0 ≤ j ≤ n− 1,
(5.18)

where differentials are indexed by the skeletal filtration. These give the
differentials of Conjecture 5.15 for i = 1, and (via the map of (3.18))
those of (3.6).
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This enables us to proceed by induction on Snaith degree, using
the Hopf endomorphism described in Lemma 5.16. Assume induc-
tively that the differentials on x̃n+i−j−1,j and ηn+i−j−1,j are as stated in
3.16 and (5.17). Differentials must commute with the Hopf map, so if
x̃n+i−j,j survives to E2pj we have

H(d2pj(x̃n+i−j,j)) = d2pj(H(x̃n+i−j,j))

= d2pj(x̃n+i−j−1,j − ηn+i−j−1,j(v
−1
n un)p

i−1

))

= vny
pj

i−1,n−1−j − vnβ
pj

i−1,n−1−j(v
−1
n un)p

i−1

= H(vnỹ
pj

i,n−1−j).

This means that if x̃n+i−j,j survives to E2pj then

d2pj(x̃n+i−j,j) = vnỹ
pj

i,n−1−j + ci,j,(5.19)

where the error term ci,j must be a Hopf algebra primitive of Snaith
degree pn+i that is in the kernel of the Hopf endomorphism H.

The other possibility is that x̃n+i−j,j does not survive to E2pj but
supports an earlier differential of the form

dr(x̃n+i−j,j) = ci,j for 2 ≤ r < 2pj,(5.20)

where ci,j is as above. Similarly we can assume inductively that ỹn+i−j,j−1

survives to E2p+1, so a differential on ỹn+i−j,j−1 must have the form

dr(ỹn+i−j,j−1) = c′i,j for 2 ≤ r ≤ 2p,(5.21)

where c′i,j has the same properties as ci,j. We will refer to such unwanted
differentials as spurious and show they cannot occur by showing that
there are no nontrivial elements ci,j and c′i,j as above. We will use the

structure of the triple loop space Ω3S1+2pn .

5.3. Excluding spurious differentials. The fact that the error terms
ci,j and c′i,j are primitives of Snaith degree pn+i in the kernel of the Hopf
endomorphism means that they must have the form

ci,j = γi,ju
pn+i

0 +
∑

0≤k≤n−1

αi,j,kỹ
pn+i−k−2

1,k(5.22)

and c′i,j = γ′i,ju
pn+i

0 +
∑

0≤k≤n−1

α′i,j,kỹ
pn+i−k−2

1,k(5.23)
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where the coefficients γi,j,αi,j,k, γ
′
i,j and α′i,j,k are in the Er-term of the

localized Adams spectral sequence for Y (n) as follows.

γi,j ∈ E1+r−pn+i, 3pn+i−2pj+r−2
r

αi,j,k ∈ E1+r−2pn+i−k−2, 2pn+i−1−2pj+r−1
r

γ′i,j ∈ E2+r−pn+i, 3pn+i−2pj+r−2
r

α′i,j,k ∈ E2+r−2pn+i−k−2, 2pn+i−1−2pj+r−1
r

Note that there is no hope of excluding these coefficients by simple
sparseness arguments, because there are only finitely positive values of

t for which the group E
s, s|vn|+t
r vanishes for small r.

These filtrations of these coefficients are negative, but the spuri-
ous differentials must lift back to the unlocalized Thomified Eilenberg-
Moore spectral sequence, and there the coefficients must have nonneg-
ative filtration. The element x̃i,j or ỹi,j need not be in the image of the
unlocalized Er-term, but some vn-multiple of each must be until we get
to the stage where it supports a localized differential. The power of vn
could increase with r if there is an unlocalized dr with a target in the
vn-torsion.

Thus in order to exclude spurious differentials, we will proceed as
follows.

(i) Find the smallest vn-multiple of x̃i,j which is in the image of the
unlocalized E2-term.

(ii) Get an upper bound (depending on dimension) of the vn-torsion
in the unlocalized E2-term.

(iii) Show that the torsion created in E3 by the expected d2s does not
exceed this upper bound.

(iv) Use the torsion estimate to get information about smallest vn-
multiple of x̃i,j which is in the image of the unlocalized Er-term.
This will lead to restrictions on the coefficients in (5.22) and (5.23)
which will enable us to exclude spurious differentials.

We do not know how to control the torsion in E2p+1 created by the
d2ps, and this difficulty prevents us from proving Conjectures 3.14 and
5.12 for j > 1.

For step (i) above, let

e(i, j) =

{
0 for i ≤ 0
pi+j−pj
p−1

for i > 1.
(5.24)

Then we can combine (5.6) with (5.9) to conclude that for i > 1

ve(i−1,j+1)
n x̃n+i,j ≡ (−1)iv

e(i−2,j+1)
n+1 ξ

pj

n+1 ⊗ u
pi+j−1

n+1 mod (vn).(5.25)
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This represents (−1)iv
e(i−2,j+1)
n+1 hn+1,ju

pi+j−1

n+1 , which is nontrivial in the

appropriate Ext group. Similarly one can show that v
e(i−1,j+2)
n ỹn+i,j

has a nontrivial reduction modulo vn.
For step (ii) above we have the following torsion estimate.

Lemma 5.26. All vn-torsion in the E2 of the Thomified Eilenberg-
Moore spectral sequence below dimension 2pn(pn+i + pn+1 − 2) is killed

by v
e(i,0)
n .

Proof. Recall from the proof of 5.1 that our E2-term is isomorphic
(up to regrading) to

ExtF⊗P ′∗(Z/(p), U ⊗ V
′).

Consider the short exact sequence of comodules over F ⊗ P ′∗,
0→ U ⊗ V ′ → Z → Z/(U ⊗ V ′)→ 0,

where Z is an in (5.4). We know by (5.8) that the Ext group for Z is
torsion free, so the torsion in E2 all comes from the Ext group for the
quotient comodule via the connecting homomorphism. It follows that
the torsion in E2 is controlled by that in the quotient itself. The first

element there not killed by v
e(i,0)
n is zn+1zn+i, which is in the indicated

dimension.

For (iii), the localized differential d2(x̃n+i,0) = vnỹi,n−1 pulls back to

d2(ve(i−1,1)
n x̃n+i,0) = ve(i,0)

n ỹi,n−1

=

{
v
e(i,0)
n ỹi,n−1 for i ≤ n+ 1

v
e(n+1,0)
n (v

e(i−n−1,n+1)
n yi,n−1) for i ≥ n+ 2,

so in E3 the element v
e(i−n−1,n+1)
n yi,n−1 for i ≥ n + 2, which is not

divisible by vn, has dimension

2pn(pn+1 − 1)(pi − 1)

p− 1
− 2,

and is killed by v
e(n+1,0)
n . This exponent does not exceed the one given

by 5.26, so no higher torsion exists in E3.
We now turn to step (iv). In (5.22) and (5.23) we can ignore the

terms with k = n − 1 since we know that ỹ1,n−1 is killed by d2. The
remaining coefficients with the largest filtrations are αi,j,n−2 and α′i,j,n−2

with

Filt(αi,j,n−2) = 1 + r − 2pi

Filt(α′i,j,n−2) = 2 + r − 2pi
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Thus in order to get a spurious value of d2(v
e(i−1,1)
n x̃n+i,0) we would

need the quantity

3 + e(i− 1, 1)− 2pi = (3− 2p)e(i, 0)

to be positive, but it never is. Thus d2(x̃n+i,0) is as claimed.
For the differential on x̃n+i−1,1, we need to estimate the smallest vn-

multiple of it which is in the image of the unlocalized Er-term. If we
assume the worst, namely that at each stage there is a differential with
a target having the largest order of vn-torsion allowed by 5.26, namely
e(i, 0). Then the filtration of this element is at most

1 + e(i− 1, 1) + (r − 2)e(i, 0) = (r − 1)e(i, 0).(5.27)

It follows that for r < 2p the filtration of v
e(i−1,1)+(r−2)e(i,0)
n αi,1,n−2 is at

most 2p−3. The product of any other coefficient with this power of vn
would have negative filtration, so the other coefficients must vanish.

Now we make use of the comodule structure of Lemma 5.1(iii). It
implies that αi,1,n−2 cannot be divisible by vn+k for k > 0. This means
it suffices to consider it modulo (vn+1, . . . , v2n). Its image there is a
linear combination of elements of the form venx with e ≥ 0 and x in the
subring generated by the surviving hn+i,j and bn+i,j. The filtration of x
must be a nonnegative multiple of 2p− 2, so it must be 0. This means
our spurious differential has the form

dr(x̃n+i−1,1) = venỹ
pi

1,n−2.

The exponent e is positive, which contradicts our assumption that r <
2p.

However we cannot exclude the case r = 2p, so in the localized
Thomified Eilenberg-Moore spectral sequence for some i ≥ 3 we could
have

d2p(x̃n+i−1,1) = vnỹ
p
n+i−2,0 + αn−2y

pi

1,n−2

so d2p(x̃n+i−1,1 − v−1
n αn−2y

pi−p
1,n−2x̃n,1) = vnỹ

p
n+i−2,0.

We still need to show that the elements ỹn+i−j,j−1 for 0 < j < n and
x̃n+i−j,j for 1 < j < n survive to E2p+1. An argument similar to the
one above shows that each survives to E2p. At that stage we know that
ỹp1,n−2 gets killed, so we can ignore the coefficients αi,j,n−2 and α′i,j,n−2,
concentrating instead on αi,j,n−3 and α′i,j,n−3. Multiplying them by the
worst power of vn still gives an element with negative filtration, so we
can exclude spurious d2ps on these elements.

This completes the program to prove Conjectures 3.16 and 5.15.
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