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The goal of this note is to present some of the relationship between
some “old-fashioned” constructions in homological algebra and the re-
cent finite localization functors of Mahowald-Sadofsky, Ravenel, Miller,
et al ([7], [14], [9].) The main result verifies a conjecture of Mahowald
and Sadofsky (for finite spectra,) yielding a somewhat geometric inter-
pretation of the so-called “vn-periodic Ext-groups.” It is a pleasure to
thank Mark Hovey, Mark Mahowald, John Palmieri and Hal Sadofsky
for helpful conversations and correspondence.

The homological algebra referred to above is concerned with

Exts,tA (Z/p,Z/p),

the E2 term of the classical Adams spectral sequence for π∗(S
0) for any

prime p, where A is the mod p Steenrod algebra. One way to study this
is by using appropriate finite subalgebras. For each n ≥ 0, let A(n)
denote the finite subHopf algebra of the Steenrod algebra generated by

Sq0, Sq1, . . . , Sq2n

if p = 2 and by

β, P 1, . . . , P pn−1

,

if p odd. Then the Hopf algebra cohomology

H∗(A(n)) = ExtA(n)(Z/p,Z/p)

is of interest for several reasons:

• Since lim
←−
n

ExtA(n)(Z/p,Z/p) = ExtA(Z/p,Z/p), we get complete

information about our goal.
• For each n ≥ 0, ExtA(n) is effectively computable by “finite” meth-

ods.
1
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• These Ext-groups can be used to study the “chromatic” approach
to homotopy in the setting of the classical Adams spectral se-
quence. In particular, ExtA(n) is closely related to the “periodic”
spectra BP 〈n〉, as shown below.

For each prime p, the Brown-Peterson spectrum BP is well-known,
with H∗(BP ) = A//E(Q0, Q1, . . . ), where Qn is the nth Milnor gener-
ator of the mod p Steenrod algebra. The associated Johnson-Wilson
spectrum is BP 〈n〉,, with H∗(BP 〈n〉) = A//En where we use the no-
tation En = E(Q0, Q1, . . . , Qn), and H∗(−) denotes cohomology with
Z/p coefficients. So we can calculate π∗(BP 〈n〉) from the classical
Adams spectral sequence:

Es,t
2 = Exts,tA (H∗(BP 〈n〉),Z/p)

= Exts,tA (A//En,Z/p)
∼= ExtEn(Z/p,Z/p)
∼= Z/p[q0, q1, . . . , qn],

where the class qi ∈ Ext1,2pi−1. Since these generators are concentrated
in even degrees, we conclude that E2 = E∞ here. Further, because the
E2 generator q0 corresponds to the Bockstein operation, it represents
the element p ∈ π0(BP 〈n〉). So we see easily that

π∗(BP 〈n〉) ∼= Z(p)[v1, . . . , vn],

where |vi| = 2pi − 2. The periodic version of the Johnson-Wilson
spectrum is E(n), with

E(n)∗ = Z(p)[v0, v1, . . . , vn, v
−1
n ].

The inclusion i : En ↪→ A(n) induces a restriction homomorphism in
cohomology

i∗ : ExtA(n)(Z/p,Z/p)→ ExtEn(Z/p,Z/p).

We use this to see clearly the link between BP 〈n〉 and ExtA(n). The
main result of [15] is the following.

Theorem 1. For p odd, there exists a polynomial subalgebra

Z/p[v0, v
pn

1 , vp
n−1

2 , . . . , vpn] ⊂ ExtA(n)(Z/p,Z/p),

where the generators restrict to the obvious classes in H∗(En).

The proof uses a careful analysis of the Cartan-Eilenberg spectral
sequence for the extension

Fp → Pn → A(n)∗ → En → Fp
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where Pn is the truncated polynomial algebra on the ξis and En is the
exterior algebra on the τis.

For the prime 2, the situation is more difficult. The following is
proved in [8].

Theorem 2. There exists a polynomial subalgebra

Z/p[v0, v
N1
1 , vN2

2 , . . . , vNnn ] ⊂ ExtA(n)(Z/2,Z/2),

where the generators restrict to the obvious classes in H∗(En).

The proof uses results of Lin [3] and Wilkerson [16] that show that
the restriction homomorphism i∗ is onto in infinitely many positive
degrees. Note that these generators are only defined up to cosets for
p = 2. Using a spectral sequence based on a Koszul-type resolution of
A(n)//A(n− 1), we showed that the exponent Nn could be identified:

v2n+1

n ∈ ExtA(n)(Z/2,Z/2).

The other exponents were more mysterious. In answer to a recent
question of W. Singer, we have the following.

Theorem 3. For all i ≥ n+ 1, there exists ri such that

v2rik
i ∈ ExtA(n)(Z/2,Z/2),

for all k ≥ 1.

Proof: Consider the May-Ivanovskii spectral sequence for H∗(A(n)).
This collapses at a finite Er, by the results of Bajer and Sadofsky
([1]). The element vi corresponds to hi,0 in the E1 term. Because the
differentials are derivations, we have room for only finitely many:

vi 7→ a1

v2
i 7→ a2

...

v2ri
i 7→ 0.

Thus the appropriate powers of the elements are cycles in the spectral
sequence. Mapping to the same spectral sequence for H∗(En) shows
that these elements are never boundaries. This completes the proof of
the theorem.

We use these polynomial subalgebras in H∗(A(n)) to define “vn-
periodic” Ext, v−1

n ExtA(Z/p,Z/p), as follows:
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ExtA(Z/p,Z/p)

...
...

ExtA(k+1)(Z/p,Z/p) v−1
n ExtA(k+1)(Z/p,Z/p)

ExtA(k)(Z/p,Z/p) v−1
n ExtA(k)(Z/p,Z/p)

...
...

ExtA(n)(Z/p,Z/p) v−1
n ExtA(n)(Z/p,Z/p).

u

u u
w

u u
w

u u

u u
w

So we define

v−1
n ExtA(Z/p,Z/p) := lim

←−
k

{v−1
n ExtA(k)(Z/p,Z/p)}.

Taking the inverse limit, we obtain a “localization” map

fn : ExtA(Z/p,Z/p) −→ v−1
n ExtA(Z/p,Z/p),

defining vn-periodic and vn-torsion in ExtA(Z/p,Z/p) in terms of the
kernel of fn.

The following is proved in [15] and [8].

Theorem 4. If a class a εExtA(Z/p,Z/p) is vn-periodic, then a is also
vn+k-periodic for all k ≥ 0. Equivalently, if a is vn-torsion, then a is
also vi-torsion for all i ≤ n.

Note that this sets up a “chromatic filtration” of ExtAZ/p, closely
related to that subsequently defined by Palmieri ([10]).

We wish to investigate the relationship between this “vn-periodic
Ext” and the finite or telescopic localizations that have been the sub-
ject of much study in recent years. Such functors have been consid-
ered at least partly as a consequence of calculations that show that
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the Telescope Conjecture ([13]) is most likely false ([14],[6],) providing
a construction which agrees with the geometrically defined telescope,
but which preserves the desirable functorial properties of the usual
Bousfield localization.

One version of this sort of functor is due to Mahowald and Sadofsky,
who define the “telescopic localization” of a spectrum. To explain
their construction, we need to recall some results that follow from the
Nilpotence Theorem, most of which are due to Hopkins and Smith
([4].) We recall that a finite spectrum X is said to be of type n if
K(n − 1)∗(X) = 0 and K(n)∗(X) 6= 0, where K(j) is the jth mod
p Morava K-theory, with K(j)∗ = Fp[vj, v

−1
j ]. Such a type n finite

complex always has a “vn-self map:

v : ΣiX → X,

which induces an isomorphism in K(n)∗(X). For X of type n, the vn-
telescope of X is

Telvn(X) = v−1
n X = lim

−→
(X → Σ−iX → Σ−2iX → · · · )

for any vn self map v : ΣiX → X. All such vn-telescopes of X are easily
seen to be homotopy equivalent, so that Telvn(X) is well-defined.

We further recall some basics of Bousfield’s theory. A spectrum X
is said to be E-local if

[W,X]∗ = 0 whenever E∗W = 0.

The Bousfield localization of X with respect to E is a map

L : X → LEX,

where LE is E-local and E∗L is an isomorphism. Two spectra X and
Y are Bousfield equivalent if

X ∧W ' ∗ ⇐⇒ Y ∧W ' ∗.
Two spectra are said to be in the same Bousfield class if they are
Bousfield equivalent. Bousfield localization with respect to the pe-
riodic Johnson-Wilson spectrum E(n) has been so important to the
“chromatic” approach to topology that the notation

LnX := LE(n)X

has become standard. See [13] for the origins of this school. Note that
LnX = L(K(0)∨···∨K(n))X for all n ≥ 0.

Mahowald and Sadofsky base their definition of telescopic localiza-
tion on the following observation: for all n ≥ 0, for any finite complex
X of type n, the Bousfield class of Telvn(X) depends only on n. We
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hereafter denote any such telescope by Tn. For any spectrum X (finite
or not,) we define the nth telescopic localization of X as

LfnX := L(T0∨T1∨···∨Tn)X.

One can show easily that if X is finite type n, then

Telvn(X) ' LTnX ' LfnX.

The definition of LfnX above can be shown to agree with the finite local-
ization functors Lfn, given by Ravenel ([14]) and Miller ([9].) Ravenel’s
definition involves constructing an appropriate spectrum LfnS

0 as a
limit of certain finite complexes, then defining

LfnX = LLfnS0X,

for all spectra X. Miller’s definition follows the original ideas be-
hind usual Bousfield localization with respect to the periodic Johnson-
Wilson spectrum E(n), considering the cofiber of∨

(W finite, E(n)∗W=0)

W → X.

Further, one can show that Lfn is smashing. That is, LfnX = (LfnS
0)∧X,

for all spectra X.
The Telescope Conjecture ([13]) predicts that for any finite complex

of type n, the localization map

TelvnX
L−→LnX

should be an equivalence. At the time the conjecture was proposed,
it was thought that only the localization functors Ln were smash-
ing. Since finite localization with respect to E(n) agrees with the vn-
telescope, some have reformulated the Telescope Conjecture as “In the
stable homotopy category, all smashing localizations are finite.” (See
[5].)

Mahowald and Sadofsky found a more geometric construction of
LfnX. For an ordered index I = (i0, i1, . . . , in), let

M(I) = M(pi0 , vi11 , . . . , v
in
n )

denote any choice of finite spectrum with

BP∗(M(pi0 , vi11 , . . . , v
in
n )) = BP∗/(p

i0 , vi11 , . . . , v
in
n ),

a so-called “generalized Moore space.” With the usual order on these
indices, we have maps

f IJ : M(I)→ Σ|I−J |M(J)
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commuting with the projection onto the top cell, whenever J ≤ I,
where

|I| = i12(p− 1) + i22(p2 − 1) + · · ·+ in2(pn − 1).

Let M(I) denote the fiber of the projection onto the top cell

M(I)
p−→S|I|+n+1,

So we have a cofiber sequence

Sn+|I| gI−→M(I)→M(I),

for all I.

Theorem 5. (Mahowald-Sadofsky, [7]). The map

S0 gI−→lim
−→
I

Σ−n−|I|M(I)

is Lfn localization.

This is a vast generalization of earlier work of Davis, Mahowald and
Miller on limits of stunted projective spaces ([2].) Since Lfn is smashing,
it gives a construction of LfnX for all X. However, this looks inherently
incalculable.

The surprising part of the Mahowald-Sadofsky program is their con-
struction of an Adams spectral sequence converging to π∗(L

f
nX). The

construction is quite technical, requiring a modified Adams tower and
a lot of work with “stably finite” A-modules and spectra (ala Palmieri-
Sadofsky [12].) In the end, they identify the E2 term of the spectral
sequence in the following manner.

First, they work in category of comodules over the coalgebra A∗. Let
St denote the category of chain complexes of A∗-comodules, with G•
an injective resolution of Z/p = H∗(S

0). For any spectrum X,

EclASS
2 (X) = ExtA∗(Z/p,H∗(X)) ∼= [G•, N•],

where N• = injective resolution of H∗(X) and [−,−] denotes chain
homotopy classes of maps in St. This category is explored in great
detail in [11].

The “finite localization” Adams spectral sequence uses a modified
Adams resolution for the finite spectrum M(I) (for appropriate I) and
then takes a direct limit, resulting in a spectral sequence converging to
π∗(L

f
nX). Mahowald and Sadofsky identify the resulting E2 term as

ELfnASS
2 (X) ∼= [G•, LJ(N•)],
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where LJ denotes a certain chain complex localization that looks like
an algebraic analog of the “finite localization” of Miller, et al. In partic-
ular, one can choose J• = the finite chain complex given by a modified
Adams resolution for M(U I), for some particular I, a finite complex of
type n+ 1.

The connection between the ideas of Mahowald and Sadofsky, among
others, and the homological algebra presented earlier is the following
conjecture.

Conjecture 6. (Lfn-Ext Conjecture, Mahowald-Sadofsky [7]) For X
any spectrum (in the usual stable homotopy category,)

ELfnASS
2 (X) ∼= v−1

n ExtA(H∗X,Z/p),

where

v−1
n ExtA(Z/p,Z/p) := lim

←−
k

{v−1
n ExtA(k)(Z/p,Z/p)},

as above.

Mahowald and Sadofsky cite some evidence for the conjecture. They
note that it’s true for n = 0, 1 by direct computation for X = S0 (then
use the fact that Lfn is smashing to extend to all spectra.) Further,
they prove that the conjecture holds for X a finite spectrum of type
n, with the added condition of H∗X having appropriate P t

s -homology
groups vanish. However, the conjectured isomorphism is between an

object defined as a direct limit (the ELfnASS
2 ) and an inverse limit (the

vn-periodic Ext-group,) so one is uninclined to be optimistic about the
conjecture.

Here the finite localization Lfn is a spectrum level construction, (i.
e. in the usual stable homotopy category,) with analogues in several
appropriate algebraic settings. Note that we have a number of op-
tions on how to view the functor Lfn, from the work of Miller, Ravenel,
Mahowald and Sadofsky:

• As a direct limit (colimit) of cofibers built from type n+ 1 finites.
• As a Bousfield localization w.r.t. LfnS

0, which can be constructed
as a direct limit of M(I)s.
• As a finite localization away from a type n+ 1 finite.
• As a finite localization with respect to E(n) or K(≤ n), where
E(n) is the periodic Johnson-Wilson spectrum and K(≤ n) is a
shorthand notation for K(0) ∨ · · · ∨K(n).
• As Bousfield localization with respect to T (≤ n), a wedge of vi-

telescopes of finite type i complexes, with i ≤ n.
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Again, each spectrum level construction has an appropriate counterpart
in appropriate algebraic settings.

The most convenient framework in which to explore these ideas is
given in Palmieri’s opus [11]. As above, let St denote the homotopy
category whose objects are cochain complexes of injective graded co-
modules over the dual Steenrod algebra A∗, with morphisms cochain
homotopy classes of graded maps of complexes. Let St(i) denote the
obvious analog of St over the dual of the finite Hopf algebra A(i). In
these categories, the sphere S (actually S∗,∗, but we’ll suppress the bi-
grading whenever possible) is an injective resolution of Z/p, which we
denote by G(∞)• ∈ St , as above, or by G(k)• ∈ St(k). For a cochain
complex X• ∈ St, which is a resolution of a comodule M , the homotopy
groups are just

π∗∗(X
•) = [G(∞)•, X•]∗ = Ext∗,∗A∗(Z/p,M),

For a cochain complex X• ∈ St(k),

π∗∗(X
•) = [G(k)•, X•]∗ = Ext∗,∗A(k)∗

(Z/p,M).

We’ll attempt as much as possible to be careful about which cate-
gory we’re working in, to avoid confusion about what π∗∗(−) means.
In particular, we adopt the following convention: for a cochain com-
plex over A∗, X

• ∈ St, we’ll use X•k to denote X• thought of as an
A(k)∗-resolution. Further following Palmieri’s notation, let HA(i)• de-
note an injective resolution of A∗2A(i)∗Z/p, so that π∗∗(HA(i)•) =
ExtA(i)∗(Z/p,Z/p). We also have St(k) analogs of HA(i)•, for k ≥ i,
which are not just given by taking A∗2A(i)∗Z/p, as A(k)-modules. In-
stead, in St(i), HA(i)•i = G(i)•, and in St(k), HA(i)•k is an injective
resolution of A(k)∗2A(i)∗Z/p, so that the homotopy groups in St(k) are
again just ExtA(i)∗(Z/p,Z/p).

There are obvious analogues of the Lfn functor in both St and St(k),

for all k, which we’ll denote by Lfn and Lfn,k, respectively. In particular,
if X is a spectrum (in the usual stable category) and C• is an A∗-
resolution of H∗X, then

π∗∗(L
f
nC
•) = ELfnASS

2 (X).

With this form of Palmieri’s notation, we can define v−1
n X•, for any

X• ∈ St, in several ways:

v−1
n X• : = lim

←−
k

(v−1
n HA(k) ∧X•k)
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and

v−1
n X• : = lim

←−
k

(v−1
n HA(k)) ∧X• = (v−1

n S0) ∧X•.

For finite X•s, these two definitions agree, as shown in [11]. A third
possibility is to remember that in St(k), the sphere S0

k = HA(k)• =
G(k)• has a vn self map, so that for any spectrum X•k ∈ St(k), we can
form the vn-telescope Telvn(X•k), using the self map

S|v
L
n | ∧X vLn−→S0 ∧X = X.

So for any spectrum X• ∈ St, we have another possible definition:

v−1
n X• : = lim

←−
k

Telvn(X•k).

Lemma 7. For a finite spectrum X• ∈ St, the three definitions of
v−1
n X• agree.

Proof: For finite X•s, the first two definitions agree, by Palmieri’s work.
For any finite X•, we have

v−1
n X• := lim

←−
k

v−1
n (A2A(k)X

•
k)

= lim
←−
k

A2A(k)(TelvnX
•
k)

= lim
←−
k

HA(k)• ∧ (TelvnX
•
k)

' lim
←−
k

(TelvnX
•
k)

= lim
←−
k

v−1
n X•

since lim
←−
k

HA(k)• = S0 = G(∞)• in St.

So we can think about v−1
n X• in several ways, all of which agree if

X is a finite spectrum. Of course, we’re really interested in

v−1
n ExtA(M,Z/p) := lim

←−
k

v−1
n ExtA(k)(Mk,Z/p)

= lim
←−
k

π∗∗(v
−1
n HA(k)• ∧X•k)

= π∗∗((lim←−
k

v−1
n HA(k)) ∧X•k)

= π∗∗(v
−1
n S0 ∧X•),
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where X• is an injective A∗-resolution of some finite comodule M .
(We’re restricting to finites here to make everything in sight agree.)

Mahowald and Sadofsky’s conjecture would follow from the following:

Conjecture 8. For any X• ∈ St,
LfnX

• ∼= v−1
n X•.

One might also conjecture that this isomorphism holds at the St(k)
level, asking if

Lfn,kX
•
k
∼= v−1

n X•k???

for all X•k ∈ St(k). Looking at this question forces one to think about
all sorts of interesting phenomena.

First, we have the following result, probably originally due to Mark
Hovey (unpublished):

Lemma 9. In St(k), v−1
n X•k is just finite localization of X•k away from

the cofiber of the vn element in the sphere, HA(k)/vn.

This is just “algebraic localization” of the unit in the category St(k),
so the proof is done in Hovey-Palmieri-Strickland ([5].) Here’s a brief
sketch. The category St(k) is a unital algebraic stable homotopy cat-
egory (in HPS terms,) with sphere S = HA(k) = G(k). There’s a
power of vn in π∗∗(HA(k)), which we’ll denote by vn to avoid unneces-
sary complications. We have the usual cofibration HA(k)

vn−→HA(k)→
HA(k)/vn. Recall that finite localization away from HA(k)/vn is a
smashing finite localization with acyclics generated by HA(k)/vn. Note
that the functor v−1

n π∗∗(−) is a homology theory on St(k), since it pre-
serves coproducts and is exact as a functor of π∗∗(HA(k))-modules.
So

v−1
n π∗∗(X

•
k) = v−1

n π∗∗(HA(k) ∧X•k) = v−1
n π∗∗(L(away HA(k)/vn)X

•
k).

Further, [HA(k)/vn, L(away HA(k)/vn)X
•
k ] = 0 for any X•k ∈ St(k), so

that multiplication by vn is an isomorphism on π∗∗(L(away HA(k)/vn)X
•
k).

Hence

v−1
n π∗∗(L(away HA(k)/vn)X

•
k) = π∗∗(L(away HA(k)/vn)X

•
k).

This completes the proof of the Lemma.

Recall that in St(k) or St, Lfn,k (resp. Lfn) is finite localization away
from an injective resolution of F (n+ 1), a finite complex of type n+1.
This is easy to see, since the finitely-K(≤ n)-locals are exactly the
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finitely-F (n + 1)-acyclics. (Recall that in the category St, we replace
K(≤ n) with its couterpart, Z(≤ n), where

Z(≤ n) :=
∨
d≤n

Z(d),

with Z(d) is a localized version of the cochain complex resolving the
comodule A/(ud), with ud the dth P s

t element in the obvious ordering.)

We recall that finite localization away from C is the same as finite
localization away from D if and only if C and D generate the same thick
subcategories. But the thick subcategories generated by HA(k)/vn and
F (n+ 1) are quite different, since the times p map acts nonnilpotently
on HA(k)/vn but not on F (n+ 1).

The upshot of all this is that in St(k)

Lfn,kM
•
k 6= v−1

n M•
k ,

for at least one injective A(k)∗-resolution M•
k .

This does NOT mean that the Lfn-Ext conjecture is false, only that
the most obvious analog in the A(k)-world can’t be true. Further, this
counterexample M•

k seems likely to be an infinite spectrum in St(k),
as we will see below.

The following Lemma shows how to use information on the St(k)
level to help us address the actual conjecture.

Lemma 10. For all finite X• ∈ St,
LfnX

• = lim
←−
k

Lfn,kX
•
k .

Note that, at least on the surface, we’ve somehow interchanged a
direct and an inverse limit, which seems woefully optimistic. However,
there is a simple way to think about this: First, we show that the
functor

L′(X•) : = lim
←−
k

Lfn,kX
•
k

is a localization functor on the category St. Then we show that it
agrees with Lfn. One’s initial inclination in approaching such a question
might be to use some sort of thick subcategory argument, but there’s
no known characterization of thick subcategories of St. However, it’s
still easy to compare L′ and Lfn in St.
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First, we need to make sure that L′ is even defined. In particular,
for a complex X• ∈ St, we need to know that the map given by the
following diagram makes sense:

X•k+1 X•k

Lfn,k+1X
•
k+1 Lfn,kX

•
k

w

forget

u
L

u
L

w

???

The localizations on the bottom row take place in different categories,
so there’s no obvious map, at least on the surface. However, we recall
that the Mahowald-Sadofsky theorem shows that LfnX

• can be com-

puted by taking lim
−→
I

X• ∧M(I), for M(I) appropriate finite complexes

of type n+ 1. In the St(k) setting, we can just choose these complexes
as their images under the forgetful functor St → St(k). So it’s clear
that the map in question is just the forgetful functor applied both to
X•k+1 and to the Ms.

Recall that a functor L on a stable homotopy category is a localiza-
tion if

• The natural transformation L to L2 is an equivalence.
• [LX,LY ]∗ → [X,LY ]∗ is an iso.
• LX = 0 implies that L(X ∧ Y ) = 0 for all Y .

For our functor L′ above, we know that on the St(k) level, all three

conditions are satisfied by Lfn,k. In particular, it’s easy to see that the

inverse limit of the isomorphisms Lfn,k
∼= (Lfn,k)

2 shows that L′ → (L′)2

is an equivalence. The second condition is more troublesome, because
the homomorphism induced from X• → L′X•,

[L′X•, L•Y •]→ [X ′, L′Y •]

is an inverse limit of St(k) maps on the second variable and a direct
limit of St(k) maps on the first variable. However, our observation that

Lfn,k can be described as smashing with a direct limit of Mks shows that

(L′X•)k = Ln,kX
•
k ,
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where, as usual, D•k is the image of the complex D• under the forgetful
functor, St→ St(k). So the desired homomorphism

[L′X•, L•Y •]→ [X ′, L′Y •]

can be thought of either as the direct limit (on k) of

[Lfn,kX
•
k , (L

•Y •)k]St(k) → [X•k , (L
•Y •)k]St(k),

which are all isomorphisms, or as the inverse limit (on j) of

[(L′X•)j, L
f
n,jY

•
j ]St(j) →, [X•j , L

f
n,jY

•
j ]St(j)

which are also all isomorphisms. Finally, since Lfn,k is smashing, so is
the inverse limit L′, so that if L′X• = 0, then smashing with Y •k still
yields zero. Hence L is indeed a localization.

How do we show that L′ agrees with Lfn? We recall that finite lo-
calization away from C is the same as finite localization away from D
if and only if C and D generate the same thick subcategories. Now
Lfn is finite localization away from F (n + 1), a finite complex of type

n + 1 in St. But L′ = lim
←−
k

Lfn,k is clearly finite localization away from

F = lim
←−
k

Fk(n+ 1), an inverse limit of finite type n+ 1 in the categories

St(k). For appropriate choices of Fk(n+ 1), this inverse limit is exactly
an F (n+ 1) in St. This completes the proof of the lemma.

Everyone who’s thought about the Lfn-Ext conjecture seems to have
believed the following:

Conjecture 11. (Local conjecture) For any cochain complex X• ∈ St,

v−1
n X• = lim

←−
i

v−1
n HA(i) ∧X•

is Lfn-local in St. Similarly, for any X• ∈ St(k), v−1
n X• is Lfn-local

there.

In particular, Palmieri states that the Local Conjecture is true for all
finite X• ∈ St. In light of this, it’s hard to see why the St(k) analogue
wouldn’t also be true, until one gets into the guts of the proof.

Theorem 12. The Local Conjecture (11) is true for any finite X• ∈
St.
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Proof: The easiest way to see this is to use the formulation of Lfn as
finite localization with respect to E(n). (As above, in the St setting, of
course, we replace the spectrum E(n) (where E(n)∗ = Z(p)[v1, . . . , v

±1
n ])

by Z(≤ n), a wedge of the periodic versions of the complexes which re-
solve the A-modules A/(ud), with d ≤ n, where ud is Palmieri’s notation
for the P s

t ’s ordered appropriately.) Let T be any finite E(n)-acyclic.
Consider [T, v−1

n X•]∗. Intuitively, we think of such a finite T as being
E(n)-acyclic in St because it has a vanishing line of slope less than or
equal to 1/(|vn|+ 1). More precisely, there must be such a vanishing
line in some Er of the Adams spectral sequence for T , so we conclude
that

[T, v−1
n X•]∗ = [S0, DT ∧ v−1

n X•]∗ = [S0, v−1
n (DT ∧X•)]∗ = 0,

where the second equality follows from the centrality of vn-self maps.
Without finiteness on T , we don’t have the needed vanishing line. Fur-
ther, if X were not finite, we don’t have the centrality needed to con-
clude that the homotopy classes of maps must add up to zero.

The result is almost certainly not true for a general X• ∈ St. Also,
in the St(k) world, we don’t have such vanishing lines, because of the
h0-towers in Ext. There seems to be no clear St(k) analogue of this
result.

Here’s why this Local conjecture is the key point:

Lemma 13. If X•k ∈ St(k) is a finite spectrum for k > n, then

Lfn,kv
−1
n X•k

∼= Lfn,kX
•
k .

Further, the obvious analogue holds in St itself:

Lfnv
−1
n X• ∼= LfnX

•.

Proof. For finite X•k ∈ St(k),

v−1
n X•k = v−1

n HA(k) ∧X•k = v−1
n G(k)• ∧X•k ,

is just a telescope. Since the maps in the telescope are just multipli-
cation by some power of vn, these maps are just the identity in LfnX

•
k .

Thus the finite localization map factors through the telescope, as usual:

X•k v−1
n X•k

Lfn,kX
•
k

w

[
[
[
[[]

u
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and clearly Lfn,kv
−1
n X•k

∼= Lfn,kX
•
k in St(k). If X• ∈ St, taking an inverse

limit of these diagrams for X•k and using Lemma 7 completes the proof.

Note that this lemma, along with the Local theorem above, implies
the following: for all finite X• ∈ St, the localization map

v−1
n X•

loc−→LfnX•,
is an isomorphism in St, since

v−1
n X• = Lfnv

−1
n X• = LfnX

•,

where the first equality follows from the Local Conjecture and the
second from Lemma 13. However, if this were true in the St(k) category
for all X• ∈ St(k), this would directly contradict Hovey’s observation.
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