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1. Introduction
In this paper we will construct a generalization of the Eilenberg-Moore
spectral sequence, which in some interesting cases turns out to be a
form of the Adams spectral sequence. We recall the construction of
both of these in general terms. Suppose we have a diagram of spectra
of the form

X0 X1 X2 · · ·

K0 K1 K2

u

g0

u

g1

u

u

g2

u u

(1.1)

where Xs+1 is the fiber of gs. We get an exact couple of homotopy
groups and a spectral sequence with

Es,t
1 = πt−s(Ks) and dr : Es,t

r → Es+r,t+r−1
r .

This spectral sequence converges to π∗(X) (where X = X0) if the
homotopy inverse limit lim←Xs is contractible and certain lim1 groups
vanish. When X is connective, it is a first quadrant spectral sequence.
For more background, see [Rav86].

The second author acknowledges support from NSF grant DMS-9802516 and the
Centre de Recerca Matematica in Barcelona.
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In the case of the classical Adams spectral sequence, we have some
additional conditions on on (1.1), namely

• Each spectrum Ks is a generalized mod p Eilenberg-Mac Lane
spectrum, and
• each map gs induces a monomorphism in mod p homology

These conditions enable us to identify the E2-term as an Ext group
over the Steenrod algebra, and to prove convergence when X is con-
nective and p-adically complete.

For the Eilenberg-Moore spectral sequence, let

X
i−→ E

h−→ B(1.2)

be a fiber sequence with simply connected base space B. Then one
uses this (in a manner to be described below) to produce a diagram
of the form (1.1) where X0 is the suspension spectrum of X. This will
yield a spectral sequence converging to the stable homotopy of X, but
in practice it is not very useful. However if we smash everything in
sight with the mod p Eilenberg-Mac Lane spectrum H/p, we get the
Eilenberg-Moore spectral sequence converging to H∗(X), where E2 is
a certain Cotor group over H∗(B).

In this paper we will explain a way to twist this construction
using a p-local spherical fibration over the total space E. The entire
construction can be Thomified to yield a spectral sequence converging
to the homotopy of the Thom spectrum for the induced bundle over
X. In §2 we recall a geometric construction of the Eilenberg-Moore
spectral sequence, and in §3 we explain how it can be Thomified. In §4
we identify the E2-term under certain circumstances as an Ext group
over the Massey-Peterson algebra of the base space of the fibration in
question, and in §5 we show that in some other cases we get a BP -
theoretic analog of this result. In §6, we show that a special case of
the Z/(p)-equivariant Adams spectral sequence of Greenlees can be
constructed using the Thomified Eilenberg-Moore spectral sequence.

The authors wish to thank Bill Dwyer, John Greenlees and Brooke
Shipley for helpful conversations and correspondence.
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2. A geometric construction of the
Eilenberg-Moore spectral sequence

We begin by recalling the stable cosimplicial construction associated
with the Eilenberg-Moore spectral sequence, due to Larry Smith [Smi69]
and Rector [Rec70]. Given the fibration (1.2), for s ≥ 0 let

Gs = E ×
s factors︷ ︸︸ ︷

B × · · · ×B .

Define maps ht : Gs−1 → Gs for 0 ≤ t ≤ s by

ht(e, b1, b2, . . . , bs−1)

=

 (e, b1, b2, . . . , bs−1, ∗) if t = 0
(e, b1, b2, . . . , bt, bt, bt+1, . . . , bs−1) if 1 ≤ t ≤ s− 1
(e, h(e), b1, b2, . . . , bs−1) if t = s.

Let E0 = E, X0 = X, X1 = E/Im i, and for s ≥ 1 we define
spectra

ΣsEs = Gs/Imh0 ∪ · · · ∪ Imhs−1

Σs+1Xs+1 = Gs/Imh0 ∪ · · · ∪ Imhs

i.e., the spectra Xs and Es are desuspensions of suspension spectra
of the indicated spaces. Then for s ≥ 0, hs induces a map Xs → Es
giving a cofiber sequence

Xs

hs
−−−−−−−→ Es

∂s
−−−−−−−→ ΣXs+1,(2.1)

where ∂s is projection from the topological quotient of Gs by one
subspace to the quotient by a bigger subspace.

For s ≥ 0 there is a homology isomorphism

H∗(Es) = Σ−sH∗(E)⊗H∗(B(s)),

where H denotes reduced homology. Since B is simply connected, the
connectivity of Es increases without bound with s. Note also that

H∗(Xs) = Σ−sH∗(X)⊗H∗(B(s)),

for s > 0, so the homotopy inverse limit of the Xs is contractible.
The homology exact couple associated with the cofiber sequences (2.1)
leads to the Eilenberg-Moore spectral sequence for the fibration (1.2).
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The Eilenberg-Moore spectral sequence also converges for non-simply-
connected B, also. Dwyer has proved ([D74]) that the Eilenberg-Moore
spectral sequence for the fibration

X → E → B

converges strongly to H∗(X) if and only if π1(B) acts nilpotently on
Hi(E) for all i ≥ 0.

3. The Thomified Eilenberg-Moore spectral
sequence

Now suppose that in addition to the fibration (1.2) we also have a
p-local stable spherical fibration ξ over E which is oriented with re-
spect to mod p homology. Projection onto the first coordinate gives
compatible maps of the Gs to E, and hence a stable spherical fibration
over each of them. This means that we can Thomify the entire con-
struction. To each of the quotients Xs and Es we associate a reduced
Thom spectrum, which is defined as follows. Given a space A with a
spherical fibration and a subspace B ⊂ A, the reduced Thom space
for A/B is the space DA/(SA ∪ DB) where DX and SX denote disk
and sphere bundles over the space X. Thus we can associate reduced
Thom spectra to the topological quotients Es and Xs+1 of Gs.

Let Y , K, Ys and Ks be the Thomifications of X, E, Xs and Es.
Then the cofiber sequence of (2.1) Thomifies to

Ys −→ Ks −→ ΣYs+1.(3.1)

and we have

H∗(Ks) = Σ−sH∗(K)⊗H∗(B(s)).

The exact couple of homotopy groups for (3.1) leads to a spectral
sequence converging to π∗(Y ). There is an associated diagram

Y Y0 Y1 Y2 · · ·

K0 K1 K2

u

g0

u

g1

u

u

g2

u u

(3.2)
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where Ys+1 is the fiber of gs. This is similar to the Adams diagram of
(1.1), but H∗(gs) need not be a monomorphism in general. We will call
this the Thomified Eilenberg-Moore spectral sequence. We will use the
indexing conventions of Adams rather than Eilenberg-Moore, namely

Es,t
1 = πt−s(Ks) with Es,t

r
dr−→ Es+r,t+r−1

r .

This puts our spectral sequence in the first rather than the second
quadrant.

We will see below (Theorem 4.4(ii) and Corollary 4.5) that un-
der suitable hypotheses (including that the map i of (1.2) induces a
monomorphism in homology), the Thomified Eilenberg-Moore spec-
tral sequence coincides with the usual Adams spectral sequence for
π∗(Y ).

The following lemma will be useful.

Lemma 3.3. For each prime p there is a p-local spherical fibration over
Ω2S3 whose Thom spectrum is the mod p Eilenberg-Mac Lane spectrum
H/p.

Proof. For p = 2 we can use an ordinary vector bundle. We extend
the nontrivial map S1 → BO to Ω2S3 using the double loop space
structure on BO. It was shown in [Mah79] that the resulting Thom
spectrum is H/2.

The following argument for odd primes is due to Mike Hopkins.
Let BF (n)(p) denote the classifying space for the monoid of homotopy
equivalences of the p-local n-sphere. Its fundamental group is Z×(p). A

p-local n-dimensional spherical fibration of a space X, i.e., a fibration
with fiber Sn(p), is classified by a map X → BF (n)(p). Its Thom space
is the cofiber of the projection map to X. Such fibrations and Thom
spectra can be stabilized in the usual way. We denote the direct limit
of the BF (n)(p) by BF(p).

Now consider a p-local spherical fibration over S1 corresponding
to an element u ∈ Z×(p). It Thomifies to the Moore spectrum S0∪1−ue

1.

If we set u = 1− p (which is a p-local unit) we get the mod p Moore
spectrum V (0).

As in the case p = 2, we can extend this map S1 → BF(p) to Ω2S3

using the double loop space structure on BF(p), and similar arguments
to those of [Mah79] identify the resulting Thom spectrum as H/p.
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4. Identifying the E2-term

Observe that H∗(K) is simultaneously a comodule over A∗ and (via the
Thom isomorphism and the map h∗) H∗(B), which is itself a comodule
over A∗. Following Massey-Peterson [MP67], we combine these two
structures by defining the Massey-Peterson coalgebra (they called the
dual object the semitensor product)

R∗ = H∗(B)⊗ A∗(4.1)

in which the coproduct is the composite

H∗(B)⊗ A∗

H∗(B)⊗H∗(B)⊗ A∗ ⊗ A∗

H∗(B)⊗ A∗ ⊗H∗(B)⊗ A∗ ⊗ A∗

H∗(B)⊗ A∗ ⊗ A∗ ⊗H∗(B)⊗ A∗

(H∗(B)⊗ A∗)⊗ (H∗(B)⊗ A∗),

u

∆B⊗∆A

u

H∗(B)⊗ψB⊗A∗⊗A∗

u

H∗(B)⊗A∗⊗T⊗A∗

u

H∗(B)⊗mA⊗H∗(B)⊗A∗

(4.2)

where ∆A and ∆B are the coproducts on A∗ and H∗(B), T is the
switching map, ψB : H∗(B)→ A∗ ⊗H∗(B) is the comodule structure
map, and mA is the multiplication in A∗.

Massey-Peterson gave this definition in cohomological terms. They
denoted the semitensor algebra R by H∗(B)� A, which is additively
isomorphic to H∗(B)⊗ A with multiplication given by

(x1 ⊗ a1)(x2 ⊗ a2) = x1a
′
1(x2)⊗ a′′1a2,
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where xi ∈ H∗(B), ai ∈ A, and a′1 ⊗ a′′1 denotes the coproduct expan-
sion of a1 given by the Cartan formula. Our definition is the homolog-
ical reformulation of theirs.

Note that given a map f : V → B and a subspace U ⊂ V ,
H̄∗(V/U) = H∗(V, U) is an R-module since it is an H∗(V )-module
via relative cup products, even if the map f does not extend to the
quotient V/U . In our case we have maps Gs → B for all s ≥ 0 given
by

(e, b1, . . . , bs) 7→ he.

These are compatible with all of the maps ht, so H∗(Ys) and H∗(Ks)
are R∗-comodules, and the maps between them respect this structure.

We will see in the next theorem that under suitable hypotheses,
the E2-term of the Thomified Eilenberg-Moore spectral sequence is
ExtR∗(Z/(p), H∗(K)). When B is an H-space we have a Hopf algebra
extension (see [Rav86, A1.1.15] for a definition)

A∗ −→ R∗ −→ H∗(B).

This gives us a Cartan-Eilenberg spectral sequence ([CE56, page 349]
or [Rav86, A1.3.14]) converging to this Ext group with

E2 = ExtA∗(Z/(p),ExtH∗(B)(Z/(p), H∗(K))).(4.3)

Note that the inner Ext group above is the same as ExtH∗(B)(Z/(p), H∗(E)),
the E2-term of the classical Eilenberg-Moore spectral sequence con-
verging to H∗(X). If the latter collapses from E2, then the Ext group
of (4.3) can be thought of as

ExtA∗(Z/(p), H∗(Y )),

where H∗(Y ) is equipped with the Eilenberg-Moore bigrading. This
is the usual Adams E2-term for Y when H∗(Y ) is concentrated in
Eilenberg-Moore degree 0, but the Ext group of (4.3) is graded differ-
ently in general.

Theorem 4.4. (i) Suppose that B is simply connected. Then the
Thomified Eilenberg-Moore spectral sequence associated with
the homotopy of (3.2) converges to π∗(Y ). If, in addition, H∗(K)
is a free A-module, then

E2 = ExtR∗(Z/(p), H∗(K)),
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where R∗ is the Massey-Peterson coalgebra of (4.1).
(ii) If, in addition, the map i : X → E induces a monomorphism in

mod p homology, then the Thomified Eilenberg-Moore spectral
sequence coincides with the classical Adams spectral sequence
for Y .

The hypotheses on H∗(K) may be unnecessary, but they are ad-
equate for our purposes. The result may not be new, but we know of
no published proof. Before proving the theorem we give a corollary
that indicates that the hypotheses are not as restrictive as they may
appear.

Corollary 4.5. Given a fibration

X −→ E −→ B

with X p-adically complete, a p-local spherical fibration over E, and
B simply connected, there is a spectral sequence converging to π∗(Y )
(where Y is the Thomification of X) with

E2 = ExtH∗(B)⊗A∗(Z/(p), H∗(K)),

where K as usual is the Thomification of E.

Proof. We can apply 4.4 to the product of the given fibration with
pt.→ Ω2S3 → Ω2S3, where Ω2S3 is equipped with the p-local spheri-
cal fibration of Lemma 3.3. Then the Thomified total space is K∧H/p,
so its cohomology is a free A-module. Thus the E2-term is

ExtH∗(B∧H/p)⊗A∗(Z/(p), H∗(K ∧H/p)) = ExtH∗(B)⊗A∗(Z/(p), H∗(K)).

Proof of Theorem 4.4 (i) The freeness of H∗(K) over A∗ does not make
(3.2) an Adams resolution because H∗(gs) need not be a monomor-
phism and the cofiber sequence

ΣsYs
gs−→ ΣsKs −→ Σs+1Ys+1

need not induce a short exact sequence in homology.
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We will finesse this problem by producing a commutative diagram

ΣsYs ΣsKs Σs+1Ys+1

ΣsKs ΣsWs Σs+1Ks+1

w

gs

u

gs

w

u u

hs+1

w w

for s ≥ 0.(4.6)

in which the cofiber sequence in the bottom row does induce a short
exact sequence in homology with

H∗(Ws) = H∗(Ks)⊗H∗(B).(4.7)

By the change-of-rings isomorphism of Milnor-Moore [MM65], this
implies that

ExtR∗(Z/(p), H∗(Ws)) = ExtA∗(Z/(p), H∗(Ks)).(4.8)

Splicing the short exact sequences in homology from the bottom row
of (4.6) gives a long exact sequence

0 −→ H∗(K) −→ H∗(W0) −→ H∗(ΣW1) −→ · · · ,

which gives an algebraic spectral sequence (see [Rav86, A1.3.2]) con-
verging to ExtR∗(Z/(p), H∗(K)) with

E1 = ExtR∗(Z/(p), H∗(Ws)),

suitably indexed.
The freeness hypothesis on H∗(K) implies (via (4.7)) that H∗(Ws)

is free over R∗, so the algebraic spectral sequence collapses from E2,
i.e., ExtR∗(Z/(p), H∗(K)) is the cohomology of the cochain complex

Ext0
R∗(Z/(p), H∗(W0)) −→ Ext0

R∗(Z/(p), H∗(ΣW1)) −→ · · ·

By (4.8) this is the same as

Ext0
A∗(Z/(p), H∗(K0)) −→ Ext0

A∗(Z/(p), H∗(ΣK1)) −→ · · ·

and our freeness hypothesis along with (4.6) allows us to identify this
cochain complex with the E1-term of the Thomified Eilenberg-Moore
spectral sequence.
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Thus the Thomified Eilenberg-Moore spectral sequence has the
desired E2-term if we can produce the diagram (4.6) satisfying (4.7).
We shall do this now by geometric construction.

We define the following subspaces of Gs for s ≥ 1:

As = Imh0 ∪ Imh2 ∪ . . . ∪ Imhs−1,

Bs = As ∪ Imh1

and Cs = Bs ∪ Imhs.

Then it follows that hs sends Cs−1 to Bs and Bs−1 to As, Bs/As =
Gs−1/Bs−1 and Cs/Bs = Gs−1/Cs−1. Thus for s ≥ 0 we get the fol-
lowing pointwise commutative diagram in which each row is a cofiber
sequence.

X E E/i(X)

E G1/A1 G1/B1

w

i

u

i

w

∂0

u

h1

u

h1

w

h1
w

∂1

for s = 0

and

Gs−1/Cs−1 Gs/Bs Gs/Cs

Gs/Bs Gs+1/As+1 Gs+1/Bs+1

w

hs

u

hs

w

∂s

u

hs+1

u

hs+1

w

hs+1
w

∂s+1

for s ≥ 1.

We define Σs−1Ws−1 to be the Thomification of Gs/As, and we have
previously defined ΣsKs and Σs+1Xs+1 to be the Thomifications of
Gs/Bs and Gs/Cs, so Thomification converts the diagrams above to
(4.6).

Let ps : Gs+1 → Gs ×B be the homeomorphism given by

ps(e, b1, . . . , bs+1) = ((e, b2, . . . , bs+1), b1).

Then we have

psh0 = (h0 ×B)ps−1

and psht = (ht−1 ×B)ps−1 for 2 ≤ t ≤ s.
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It follows that

Gs+1/As+1 = (Gs ×B)/(Bs ×B) = (Gs/Bs)×B

and (4.7) follows.
(ii) If the H∗(i) is monomorphic and H∗(Ks) is a free A-module,

then the diagram (3.2) is an Adams resolution for Y . Thus, the identity
map on the resolution provides a comparison map from the Thomified
Eilenberg-Moore spectral sequence to the Adams spectral sequence.
We can identify the inner Ext group of (4.3) with H∗(Y ) concentrated
in degree 0, the Cartan-Eilenberg spectral sequence collapses and our
E2-term is the usual

ExtA∗(Z/(p), H∗(Y )).

So the comparison map induces an isomorphism on the E2 term of the
spectral sequences, completing the proof of the theorem.

5. An Adams-Novikov analog

We now describe a case of the Thomified Eilenberg-Moore spectral
sequence leading to variants of the Adams-Novikov spectral sequence.
Suppose that in the fibration of (1.2), the spherical fibration over E
is a complex vector bundle and that MU∗(K) is free as a comodule
over MU∗(MU). If in addition MU∗(i) is a monomorphism, then we
get the usual Adams-Novikov spectral sequence converging to π∗(Y ).

We want an analog of 4.4 in the p-local case identifying the E2-
term for more general i. For this we need a BP-theoretic analog of the
Massey-Peterson algebra R∗ of (4.1), additively isomorphic to

Γ(B) = BP∗(B)⊗BP∗ Γ,(5.1)

where Γ = BP∗(BP ). In order to define a coproduct on this as in
(4.2), we need a coalgebra structure on BP∗(B). This does not exist
in general, but it does when H∗(B) is torsion free and BP∗(B) is
therefore a free BP∗-module. If B is also an H-space, then BP∗(B) is
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a Hopf algebra over BP∗ and (BP∗,Γ(B)) is a Hopf algbebroid (defined
in [Rav86, A1.1.1])

(BP∗,Γ) −→ (BP∗,Γ(B)) −→ (BP∗, BP∗(B))

is a Hopf algebroid extension as defined in [Rav86, A1.1.15]. This
means there is a Cartan-Eilenberg spectral sequence (see [CE56, page
349] or [Rav86, A1.3.14]) converging to ExtΓ(B)(BP∗, BP∗(K)) with

E2 = ExtΓ(BP∗,ExtBP∗(B)(BP∗, BP∗(K))).(5.2)

Then we get the following analog of Theorem 4.4, which can be
proved in the same way.

Theorem 5.3. (i) Suppose that BP∗(K) is free as a BP∗(BP )-
comodule and B is simply connected with torsion free homology.
Then the Thomified Eilenberg-Moore spectral sequence associ-
ated with the homotopy of (3.2) converges to π∗(Y ) with

E2 = ExtΓ(B)(BP∗, BP∗(K)),

where Γ(B) is the Massey-Peterson coalgebra of (5.1).
(ii) If in addition the map i : X → E induces a monomorphism

in BP-homology, then the Thomified Eilenberg-Moore spectral
sequence coincides with the Adams-Novikov spectral sequence
for Y .

There is an analog of 4.5 in which we retain the hypothesis on B
while dropping the one on K.

Corollary 5.4. Given a fibration

X −→ E −→ B

with X p-local, a a complex vector bundle over E, and B simply con-
nected with torsion free homology, there is a spectral sequence converg-
ing to π∗(Y ) (where Y is the Thomification of X) with

E2 = ExtΓ(B)(BP∗, BP∗(K)),

where K as usual is the Thomification of E.

This can be proved by applying 5.3 to the product of the given
fibration with

pt. −→ BU −→ BU
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with the universal complex vector bundle over BU .

6. A construction of the equivariant Adams
spectral sequence

In this section we provide an alternative construction of a special case
of the equivariant Adams spectral sequence, due to Greenlees ([G88]
and [G90].) We first recall Greenlees’ approach.

Let G be a finite p-group. (Later, we will restrict our attention to
the case where G is elementary abelian.) We work in the equivariant
stable homotopy category of [LMS86], with all spaces pointed and
all homology groups reduced. In this setting, G-free means that the
action of G is free away from the base point. Greenlees’ version of
the equivariant Adams spectral sequence is based on mod p Borel
cohomology, defined for a based G-spectrum X as

b∗G(X) = H∗(EG+ ∧G X; Z/(p)),

where, as above, the Z/(p) coefficient groups will hereafter be sup-
pressed. This is an RO(G)-graded cohomology theory, defined as fol-
lows for α any virtual real representation of G:

bαG(X) = H |α|(EG+ ∧G X).

Since G is a p-group, all representations are orientable, and the suspen-
sion isomorphisms in b∗G are given by the Thom maps, so the theory
is really Z-graded in this case. This cohomology theory bG is rep-
resentable in the equivariant stable category. Adams and Greenlees
identify the algebra b∗G(bG) of natural cohomology operations as

b∗G(bG) ∼= H∗(BG+)⊗̃A,
where ⊗̃ denotes the Massey-Peterson semitensor product. Greenlees
actually defines the spectral sequence in terms of a variant of Borel
cohomology, namely f - or coBorel-cohomology, represented by

cG = bG ∧ EG+.

Greenlees shows in [G88] that c∗G(cG) ∼= b∗G(bG).
Greenlees’ main result is the following cohomology version of the

spectral sequence.
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Theorem 6.1. ([G88]) For G a finite p-group, X and Y any G-spectra,
with Y p-complete, bounded below, G-free and homologically locally
finite, there is a convergent Adams spectral sequence

Es,t
2 = Exts,tc∗G(cG)(c

∗
GY, c

∗
GX) =⇒ [X,Y ]G∗ ,

natural in both variables.

One can define a similar spectral sequence based on b∗G(·), but
this requires the additional hypothesis that X is G-free to guarantee
proper convergence. A homology version of the spectral sequence can
be written using the homology theory represented by the G-spectrum
bG, ([G90]) which does calculate [X,Y ]G∗ when X or Y is not G-free,
provided we take G to be elementary abelian. The hypotheses on Y
can just be checked nonequivariantly, if Y is G-free, by looking at the
non-equivariant spectrum EG+ ∧G Y.

Greenlees’ construction involves building a resolution of b∗GY by
free b∗G(bG)-modules,

0←−b∗Y ε←−P0
δ0←−P1

δ1←−P1←−· · ·

and realizing this resolution geometrically. Apply the functor [X,−]G

to this geometric resolution, obtaining a spectral sequence with

E1 = [Σt−sX,Qs]
G =⇒ [Σt−sX, Y/ holim

s
Ys]

G,

where Qs is a locally finite wedge of copies of the spectrum repre-
senting bG made free (i.e. a wedge of copies of cG = bG ∧ EG+,) with
Ps = b∗GΣsQs. One identifies the E2 term in the usual manner, and
proves convergence by comparing c∗G- (or b∗G-) connectivity with H∗-
connectivity to show that holims Ys ' ∗.

We now show how to identify this equivariant Adams spectral se-
quence as a case of the Thomified Eilenberg-Moore spectral sequence,
with certain restrictive hypotheses. From here onward we take G to
be Z/(p), and we’ll work with the spectrum X G-fixed (so that we’ll
use the c∗G(cG)-based spectral sequence, rather than it b∗G(bG)-based
analog.) Let Z be a p-complete free G-spectrum with a spherical G-
fibration F → E(ξ)

p−→Z. Consider the Borel fibration

Z → EG+ ∧G Z → BG.
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The spherical G-fibration over Z induces a G-fibration

EG+ ∧G F → EG+ ∧G E(ξ)→ EG+ ∧G Z,

so we have the desired fibration over the total space of the Borel
fibration.

We smash the Borel fibration with

pt.→ Ω2S3 → Ω2S3

(with the trivial G-action) and apply the Thomified Eilenberg-Moore
spectral sequence construction to the resulting fibration. The result-
ing resolution is EG+∧GHZ/(p)-free. Now for a G-fixed spectrum W
(like HZ/(p) here,) the Borel construction is very simple: EG+∧GW '
BG+∧W, So the Thomified Eilenberg-Moore spectral sequence resolu-
tion is free over BG+ ∧HZ/(p). Let T (Z) denote the Thom spectrum
of the bundle over Z. Then the resulting Thomified Eilenberg-Moore
spectral sequence has

E2 = ExtH∗(BG+)⊗̃A∗(H∗BG+, H∗(T (EG+ ∧G Z)))

= ExtH∗(BG+)⊗̃A∗(H∗BG+, H∗(EG+ ∧G T (Z)))

= Extb∗G(bG)(b
∗
G(T (Z)), b∗G(S0)),

by Fp-duality, so that the Thomified Eilenberg-Moore spectral se-
quence E2 agrees with the equivariant Adams spectral sequence E2

term.

The Thomified Eilenberg-Moore spectral sequence E1 term here is
given by applying the (nonequivariant) functor π∗(−) to the Thomified
Eilenberg-Moore spectral sequence diagram

Y Y0 Y1 Y2 · · ·

K0 K1 K2

u

g0

u

g1

u

u

g2

u u

where Y is the Thom spectrum of EG+ ∧G Z ∧Ω2S3. The equivariant
b∗G(bG)-Adams spectral sequence E1 term arises from applying [S0,−]G∗
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to the geometric resolution

W W0 W1 W2 · · ·

Q0 Q1 Q2

u

g0

u

g1

u

u

g2

u u

where W is the Thom spectrum of Z and Qs is a wedge of copies of
the coBorel spectrum cG. But the Adams isomorphism ([Ad84], 5.3)
shows that

[S0, Qs]
G = [S0, Ks]

1,

so that the isomorphism of E2 terms above is induced by one on the
E1 level. This proves the following.

Theorem 6.2. Let Z be a p-complete based free Z/(p)-spectrum, with a
spherical Z/(p)-fibration over Z. The Thomified Eilenberg-Moore spec-
tral sequence for the smash product of the fibrations

pt.→ Ω2S3 → Ω2S3

and

Z → EZ/(p)+ ∧Z/(p) Z → BZ/(p)

agrees with the b∗G(bG)-based equivariant Adams spectral sequence con-
verging to π∗(T (Z))Z/(p) from E2 onward.

Unfortunately, the Thomified Eilenberg-Moore spectral sequence
is known to converge only in the case where the base space in the fibra-
tion is simply-connected, from 4.4, which is not the case for the Borel
fibration. Note that we would hope that the case of the Thomified
Eilenberg-Moore spectral sequence above would converge to [EG+, T (Z)]G∗ ,
rather than [S0, T (Z)]G∗ , the target of the Z/p-equivariant Adams spec-
tral sequence. Thus, despite the lack of simple-connectivity for the base
space, this special case of the Thomified Eilenberg-Moore spectral se-
quence does converge if [S0, T (Z)]G∗ is isomorphic to [EG+, T (Z)]G∗ =
[S0, F (EG+, T (Z))]G∗ via the comparison map T (Z)→ F (EG+, T (Z)),
which is indeed an equivalence when T (Z) is finite, by the (cinfirmed)
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Segal Conjecture ([Car84].) Thus, when Z is finite and G-free, the
Thomified Eilenberg-Moore spectral sequence converges to

π∗(T (EG+ ∧G Z)) ∼= π∗(EG+ ∧G T (Z)) ∼= π∗(T (Z)/G) ∼= π∗(T (Z)G),

as we wish, where we think of π∗(T (Z))G as [S0, T (Z)]G with the
sphere G-fixed. If Z is not finite, then the Thomified Eilenberg-Moore
spectral sequence need not converge. For example, if T (Z) = EG+ ∧
HZ/p, then π∗(T (Z)) = H∗(G), which is bounded below, while F (EG+, EG+∧
HG) = F (EG+, HG), which has homotopyH∗(G), which is unbounded.
This example was pointed out by the referee.
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